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Equations of Motion in Fourth Approximation
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The equations of motion in fourth approximation for a system of massive bodies
of finite size moving in the gravitational field of the system are obtained.

1. INTRODUCTION

The purpose of this paper is to obtain equations of motion in fourth
approximation for a system of massive bodies of finite size moving in its
own gravitational field by means of Synge’s approximation method (Synge,
1970).

In earlier papers, Synge’s method has been applied in third approxima-
tion to the study of the motion of several systems of massive bodies and
their associated fields (Hogan and McCrea, 1974; McCrea and O’Brien,
1978; O’Brien, 1979; Gambi, 1983, 1985; Gambi and San Miguel, 1986)
and in fourth approximation to the study of the lowest order radiation terms
in connection with the quadrupole formula (McCrea, 1981).

Synge’s third approximation includes Chandrasekhar’s (1965) first post-
Newtonian approximation and goes part of the way from that to the second
post-Newtonian approximation of Chandrasekhar and Nutku (1969). The
post-Newtonian approximation (PNA) was first carried far enough to give
radiation terms by Chandrasekhar and Esposito (1970) and subsequently
put on a more systematic mathematical basis by Anderson and Decanio
(1975).

The main difference between Synge’s approach and that of Chandrasek-
har and of Chandrasekhar and Nutku lies in the gauge conditions used.
Whereas the conditions of these authors lead to Poisson equations and
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instantaneous potential solutions, Synge’s conditions lead to
inhomogeneous wave equations and retarded potential solutions as in the
scheme of Anderson and Decanio. In this respect, Synge’s method is closer
to that of these authors, although their gauge conditions and corresponding
energy pseudotensors are also different. Furthermore, the convergence of
all the integrals appearing in Synge scheme is guaranteed from the beginning,
including those which occur when the retarded potentials are expanded in
terms of instantaneous potentials (Synge, 1970; McCrea, 1981).

Synge (1970) contains explicitly the equations of motion in third
approximation, which have been applied to the study of the motions
mentioned before. In this paper we develop Synge’s scheme to one further
stage, obtain the equations of motion in fourth approximation, and then
apply them to a concrete model.

2. NOTATION AND GENERAL METHOD

For details of Synge’s method the reader is referred to Synge (1970).
For a given energy tensor T we generate a sequence of metrics

Zab = a0+ Yab, (m=0,1,2,...,N) (1)

by the recurrence formula

ya=2cK3 H®,  (m=1,2,...,N) (2)
where
be = Yab —'%5ab Yaa (3)
and
Hab= Tab'*‘K_lGAab (4)

G is the truncated Einstein pseudotensor given by
G =G~ Ly, (5)
where L,, is the linear part of the Einstein tensor G for the metric v
and K2 the operator defined by
K‘r'sb = —6ar5st+J(8arDbs + 6bsDar - SabDrs)J (6)

where D, and D,, indicate partial derivatives of the first and second order,
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respectively, while J is the inverse D’Alambertian operator defined by
J(x, t)=—(4m)"" Jf(x’, t—|x—x|)|x-x|"dsx' (7N

Latin indices take the values 1, 2, 3, 4 and Greek indices 1, 2, 3.

In order to introduce approximation we must have some estimate of
the orders of magnitude of the physical quantities involved in the problem
under consideration. Having obtained this estimate in a common unit (the
second), we express all these magnitudes in terms of a single parameter
k <1 of order of the rate mass-size for the material system (Synge, 1970).
Assuming provisionally that

T = 0(k) (8)
we then have from (2)
Zab=myialb +O(k™), (m=1,2,...,N) (9a)
and
G*=G*+Oo(k"™),  (m=1,2,...,N) (9b)

To estimate the error in the Einstein field equations we have the error
tensor in Nth approximation defined by '

E®=1,+G"+xT® (10)
N N N

Then, if we terminate the sequence (2) at the Nth term, we can make this
Nth term satisfy Einstein field equations with an order ¥™*! error, i.w.,

_ N+1
E—O(k )

by requiring T to satisy the equations of motion in Nth approximation
H, = (11)
N-1

These equations are equivalent to
TabL;,=O(kN+l) (12)

where the N below the stroke indicates that the covariant derivative is
calculated with respect to the metric tensor in (N —1)th approximation.
They are called Synge equations of motion in Nth approximation.

With this scheme we can derive in a systematic way approximate
solutions of Einstein field equations and equations of motion to any degree
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of accuracy we wish. Note that for equations of motion in the Nth approxi-
mation we only need the metric components to O(k™™"). Next we shall
relax this requirement when we consider the separate components of these
equations and the different orders of magnitude for the components of the
energy tensor T°°. In the present work we consider equations of motion in
fourth approximation.

3. THE EQUATIONS OF MOTION

In accord with what has been said, the equations of motion in fourth
approximation are

Tab’b"‘K_lsGAab’b:O (13)
Then, assuming that
T*f = O(k?), T*=0(k"?), T*=0(k) (14)
we have
Zab=Zab+O(k3) (15)
and
G* = G2 + O(k*) (16)

where yab and 'yab are the metric deviations of second and third order,

respectlvely, and G"b and G“b are the truncated Einstein pseudotensors
associated with these dev1at10ns respectively.
In order to calculate G“" with an error O(k*) it is enough to dispose

of the metric in second approx1mately By equations (38) of Synge (1970),
this metric may be written in the form

gab:lsab+ygb (17)
2 2
where
Yap =2V =Ko+ V)8, +4K 5+ Eg+ O(K?) (18)
2
Yaa=4i(W, + F,)+O(K"?) (19)
2

')’44= _2(V+Ka'a'_ V2)+O(k3) (20)
2
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and
V=-RT*=0(k)
W, = —iRT**= O(k¥?)
K[-LV =RT* = O(k2)
1
E,=—— R( ViV +2VV,;Lv) = O(kz)
ks
i .
Fo= =7 RI=3V, Vet 20(V Wo, = Vo W)
+2i(W, 0 V- VOW,)=0(k"?)
with

R=—47J
Then G is given by (McCrea, 1981)
3
Gab = Mab - Yrerabs +% ’YabL:‘i-’- Sab ’YrsL:st
3 2 2 2
_(')’ZarL;i + 'YbrLika) + '}’mn[rba m][ra, n]
2 2
—%6ab7mn[rsa m][rs9 n] - ‘)’rsMrabs + '}/rp‘)’perabs
2 2 2 2
+6ab ( ‘YrsMarks - 7rp7psL;’fv - %'YVS’quLrpqs)
2 2 2 2 2
~Yab (%M?;p + yrsL;‘ks) - (ybera + Yaerb)
2 2 2 2
+ Yrs ( yaerbps + yprraps) - %’yas'YbsLikr)
2 2 2 2 2
+YarVos L+ Ve (YarLis + v, L) + O(KY)
2 2 2 2 2

where

=1 - —
Labcd - 2( ‘Yad,bc + ’}’bc,ad Yac,bd ybd,ac)
2 2 2 2

Mabcd = [ad: m][bc’ m] _[aC, m][bd, m]
Lbs = Lmbcm —%‘Sbchrrms Ltc = Lmbcm

— 1 *
Mbc = Mmbcm —26bcMmrrm’ Mbc - Mmbcm
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21)
(22)
(23)

(24)

(25)

(26)

(27

(28)
(29)
(30)
(31)
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([ad, m] are the Christoffel symbols of the first kind). From here we have
the following expressions for the terms needed for our purpose:

G*=3(V, )’ +4vO V-4W,_ (W,,~-W,,)
—4iV,W,,—2V K, ,—4V K,,,
~3(V4)*—8K,, 0 V+4V K, +10V(V,)*+4V?0O V
+GE o= Evon) Ve

+V,D'VEUV+E0'0' D V+ O(k4) (32)
G =6V, V,+4iV W,,
+4i(W, O V-VO W,)-4iV W, +0(k"?) (33)

GP==2V Vi +3(V,)8,5—4VV s +4VO V5,
+3(V2)?80s =2V oK oog+ VK poa)

FV o (~8K oot 4K g ot 4K o g t4K 0 805)
H8W, W, s +8W, Wy, +4iV (W, s+ W)
+8,5(-12W, W, ,+4W, W, , -4V K,,,

+2V K, —4iV, W, +4iV, W,,)

FAVV 148, + 16 W, W, g

+8,52VK 4yoo+2V 0o K, —4V o K, —8iW, V)
F4V(K gopot K opaor = Kapoo— Kooap)

YAV oKy + V goKoo = V.apKos)

F4I(V (a W+ V g W, ) —4iVIW gt W o0)

“8Wo (W opot Waao) =168, W, O W,

+8(W, OW,+ W, OW,) -8V K,z —4K,; OV
+8,52QVOK,,+2K,, OV)=6V(V,,)*8.5 +4VV, V,
=82V 0g=HVaE oot VipEvoa =2VoE apo

+V AEaopt Epoa)t VoBE o= E .0.)up
~V.orEoBap — VapEoo t VaoEpo

+V 5B+ V(E aopot E gonc = E vo.ap)

—E,; OV +8,4E,, OV+0(k*) O (34)
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Writing now the metric tensor g,, in the form
3

gab:Sab+pab+qab+rab+o(k4) (35)
3
where
Pab = O(k)’ Qab = O(kz)a Tab =0(k3) (36)
then the second term of equations (13) may be written in the form
Xt X+ X0+ 0(k) (37
with an error O(k’). Here X,, X", and X" are given by

)4(2! = _%pnn,cTac"*_(%pbc,a _pab,c) Tbc = O(kz) (38)

X o= (aDonPrun = 2Gmn) T

+ (panpbn,c —%PanPbc,n +%qbc,a - qab,c) T = O(k3) (39)
AZ(Z' = _%rnn,c T+ 3 PamGam ), T = %pdlplhphd,c T*

—Tabc T+ 3 bea T* 4 Pumq bm,c T

_%( Darl et GanD bc,h) T+ GanPoh,c T

~PamPrnPibc T +5 PamPrnPoen T = O(K*) (40)

and are what we may call the components of first, second, and third order,
respectively, for the 4-force ‘?t(“ in the field (for their derivation see Appendix

A). Now, writing (37) in the form

X, =Apy TP+ B s TP+ C, T+ O(K°) (41)
Xy=Aup, TP + Bygs T#*+ C, T+ O(K7) (42)

and taking into account (14), we see that the expressions needed for A
B g, C,, Aup,, Bags, and C, in (41) and (42) are

uBy»

A,y =3 (Paa + Gaa) —3PanPan) ,Oup
H(Bua = Pua) P v = Ppay) T2 gy ~ Ay T OKY)  (43)
Bga=—5Paa+ qua ~3PanDan) 48up
“'(5,“1 ~ Pue )P54‘a - (B,La — Pua )(pﬁa,4 +Pa4,;3)
tPusPaspt qapy —dpua—Gaupt O(k7/2) (44)
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C, = (840 = Pua T PuePea — Gua) (3P44,0 — Paca)
i PusPasat 100~ uss 3 Puclase T 3raau+ OKY)  (45)
Augy=—Psa(3Ppra = Ppary) T (1= P1a) 3P pya—Ppay)
+3q gy~ Gpayt O(K) (46)
Biya=—3Paap —39uap — 3 adp T i PrePne)
+H(PeaPes) p +(PaaPas) p ~ 8 PenPrePec) p —6(Paa)
+3(Pnelne). 8 +2(Paadas) 5
+(~PaatPscPea + PasPac ~ Gsa)(Ppsa— Ppas = Paasp)
—(1=Paat PacPeat Pra— qas)Paap— (1= Paa)qasp—Taspt O(k’"?)
(47)
Co=—H(Paa+ daa *raa) ¥ Pan(~3Pan +3PraPra = 4an)
+(Pac T PacPeot PasPaa — Gaa)3Pase — Pasa)
—(1- Pas— qas)Pass _%P4214P44,4
—3Psalase—3(1 = Pas)qasa—13rasat O(K?) (48)

On the other hand, taking into account (21)-(25), from (18)-(20) and
(32)-(34) we have

Puv=2AV—-Ky)8,,+4K,, (49)
qw=2V26,“,+Em, (50)
Pua=4iW, (51)
q.4=4iF, (52)

raa=—-8W2—47 'R(W,,W,,)—4in 'R(V,W,,)—8R(T*K,,)

—8R(VT°°)+4VK,, -7 'R(V.)*+2n 'R(V ,,K,,) -4V’

+2m) 'R(V o, E,,)) =27 ' R(VV )

=27 'R(VK 4,,0,) —(27) " R(VE 1,

+7 'R(VVZ)+8R(T*V?) (53)

Then

Ag,,=(—4V+4K,,— V>=2N) 85, + (V. —Ko0s,)8,

+Y4Kg,+ Eg,) . —(4Kg, + Eg,) , + O(K%) (54)
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Bupa= =4Vt 4K 5648, = (V?) 48,5 —2N 18, +4i(Wp, — W, )
—8iV(Wy, =W, 5)—4K 54— E p4
+4i(Fp,,—F,z)—8iW,V,+O(k"?) (55)
C,=-V,+4VV, —4iW,,—K,,,+4VK .,
+4K, V., +8iVW,,—12V?V,
+E,.V.—4iW,V,—4iF, ,— 4 W,)>%,
HR[-277'W, W, ,—2in" 'V, W,,~4T*K,,
—4VT = Q2m) (V) +7 'V K,
+(47) 'V g By~ 'VVu— 7 VK 40
—(47) VVE 0+ (27) ' VVEHATHV) +O(KY)  (56)
Aupy= Vabp, —4iWy , +4VV 85, +8i(WV, - VW)
—4iV W,85,+2K g, s +3E g4~ K 10408,
~4iF, ,+ O(K>) (57)
Buga=[-V?>+4K,, —2N+ VE,,+8WZ-4VK,, +8V?],
+16 W, (Wg,— W, )
+8iV Wy —7 HR[2AW, )+ V (K, ,+2K,,,
—6iW, 4 —3E o +3W,,,) +OV(4K,, -2V*~3E,,)
—6W,,+ W, , 3V, —167T*(K,, — V?)
+V (2K, +3E,,) = V(4V 44 +4K o+ E 4y oo +3(V,,)?
+167 T (1} 5+ O(K""?) (58)
Ci=-V4+3K 4= 2VV,=2N, +4iV W, +2V°V,-32W, W,
+4iV  F, +4iW,K oo+ (VE 10.0) +2(VK,,) 4 —8iVV W,
+i[~12(W2),+6(VK,,) ,—6( V), + " {R[2(W, ) —4W, W,

—12aT*(K,a = V) + V (—4iW,,+K,, ,+2K,,,
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—%E vv,00 +%E Vcr,y) + V(_’127TTO-U - 3 ‘/,44 - 3Kay,a—z/ _%Ea'u,o'v
—%( ‘/,(7)2) + ‘/,(TVKU'V +%‘/,UVE(TV
+OV[4K,, —2V?~3E,,)]} ]+ O(k*) (59)

Substituting now (54)-(59) in (41) and (42) and carrying the resultant
expressions to (13), having separated this into 3+1 equations, we have
concluded the first step in obtaining the equations of motion in fourth
approximation. As can be seen in (54)-(59), every component of the 4-force
is given in terms of retarded potentials. Now, assuming Synge’s stationary
initial conditions on the energy tensor T* (Synge, 1970), these retarded
potentials can be expanded in terms of instantaneous potentials, since the
retarded ones are given by the action of the integral operator R on density
functions of the form f(x, t) as in (7) and (26). Then we may expand all
these functions in the form

l |

S, 1) = f(x, ) =[x =X | DfX, )+ ==L DAf(x, 1)
l"3,"|3D3f(' )+ (60)
so that
Rf=1,f-1 ,f+ Isz I3D3f+ (61)
where
I,,f=Jf(x’, Hx—x'|"" dyx’ (62)

By Synge’s conditions the integrand in I, D7 f has compact support for
every density function in (54)-(59), and consequently (62) is finite for all
n. Let us now expand the potentials (21)-(25) as well as the retarded integrals
appearing in (56), (58), and (59).

Taking into account the orders of magnitude for each density function
and that D, =, t=9/at raises a quantity O(k") to O(k"*"/?), then we shall
only keep in every expansion the significant terms in order to obtain the
equations of motion in the desired approximation. The calculations for each
integral are performed in Appendix B

According to (B13), for the potential V we have

V=V-I(T*V,+2Z)-iDL,T*-1DI,(T —iT*V)
+%Dr J' (xp. —xL.) Y[-L d3x,_%DrI3(T44‘7,r),t

LD T = DY(TH , + TV ) . + O(k* (63)
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where V=—I,T* is the instantaneous “Newtonian potential” associated
to V, and

Y, =TV, —4T*V,—4iT*(W,,- W,,~5,V,)
~TuD, (—3DLT*-2V?+K,,)—4T*D,W, = 0(k*)  (64)
where D, = , =4d/dx,, and
Z=-~T"V,~4T*W, ,~iT*"D,(4K,,~ V?-2N)
~T“D[3K,, —2N = V2+iD*T*+ [(T*V )]
F2THV W, —ITYD? (T -3T*V) = 0(k"?) (65)
with
W, =—1,(iT*), K, =IT", N=-I(T*V) (66)

In order to obtain the equaﬁons of motion, we will need the derivatives
with respect to the spatial coordinates and also with respect to time. Then

~ 1 1 1 ~
Vi=V.-3 D,LDflzT“»—Z D‘LD‘,‘I4T44~§—' D.DI(T*V,),
1 1 ~
+5D' f Y, d;x' —; DMDfIS(T"”,,, + T Vo)ot oIt/ (67)
(7 44 Y7 1 3 44 1 2 oo 1 44 ¢
V’,’—'V,,"‘D,Il(—T V,t‘_Z)-—z_DtIZT '_ED:I!(T _'2’T V)

1 1 ~ 1
+§ D? j (xo— —x{,) Y, d3x,“g DtI3( T44V,r),t _Z D?I4T44

1 ~
_—5—' D?IS(TCW,V+ T44‘/,0'),a'+0(k9/2) (68)

As is demonstrated in (B17), the expansions for the potential and its
derivatives are

W, =W, - [(Y,) - iD*L(iT*)+ D LGT )+ O(k7?) (69)
W,.=W,,—-iD,DL(iT*)+iD,D}L(iT*)+ Ok’ (70)

W, =W, = DI(Y,) =3DLUT*) +{DILGT**) + O(k*) (71)
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For the potential (23) we have

K, = K= DL T +3DILT* —4D} LT + O(k*) (72)
K,.,=K,, +iD,D’L,T* —LD D}L,T* + O(k%) (73)
K= R = DILT* +ADILT* —4DILT* + O(K™)  (74)

and, in a similar way, for (24) we have

Eay == LBy = DLV, +2975,)]1+ O(K) (s)
Eg,,.= —% D,E;, + O(K) (76)
' Epua=— By = DIV, 7, 4297 5,)1+ 0K )
where
By =I(VV,+2VV,) (78)

On the other hand, expanding (25) and calculating its derivatives gives

1 . L. . o~ . ~
F,u =4_7; {F/.L — D3 V,MV,,+2( V,U'W"»“ - ‘/’“UWU)

+2W, OV-VOW,)]}+ 0k (79)
1 =
Fuv=7- F,,+0(K"? (80)

Fim =g (iFyy = DEL=3V, Vb 20V, W = ¥, W)
+2i(W, OV-VIOW,)]}+0(k* (81)
where
By = =il [~3V,V+2i(V W, ~ V., W,) +2i(W, OV - VOW,)]
(82)
We need also the expansions for the potential

N=47J(T*V) (83)
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and for its derivatives. These are

N =N+DJI(T“V) - 1D L(T* V) + 1D (T V) + O(k") (84)

N, =N, -iD,DL(T“V)+1D, D L(T*“V)+ O(k*) (85)

N, = N,+D(T“V)-iDL(T* V) +iDL(T“V)+ O(k*?)  (86)
where

N=—I{T*[ ViDL, T~ I(T*V,)~1DL(T" -3T* )]} (87)

and . .
V=V-iDILT* (88)

We will consider the retarded integral that appears at the end of (56)
as a potential, which we denote by &, i.e.,

o =R[-27"'W, W,,—2ir 'V, W,,—4T*K,,
—4VT? —Q2a) (V) + 7'V, K,
+(4m) 'V By = 'V o VK 4,0
~(4m) 'VE 0+ 2m) T V(V AT V] (89)

Its expansion in instantaneous potentials is
o = 10{ 277 'W, W, ~2in 'V W, ,—4T*(K,, - DI, T")
—4T7V—-Qm) (V) + 77 Vo (K,, — DL T™)
1 ~ 1 1 " o~ ~ e
+(47T) ‘/,0'1/ Eau -+ DIII(V,U'V,V+2V‘/,G'V) - VV‘M
T T
~1 VR g+ (4m) ' VE g+ (2) T V( ‘7,0)2+4T“92}

-DIL[-27"'W, W, ,—2ir 'V W, ,—4T*K,,

—4VT7 = (2m) 7 '(V.)?

1 WV Ko +(4m) VB = VY = VK e

—(47) T WVE 0+ 2m) TV(V )2 +4T*V 2]+ O(K?) (90)

and we also have
A, =d,+0(k" (91)
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where s is the first term of the two into which & is divided. On the other
hand, from (58) we can define the retarded potential
B=R(b)=R{2AW, )+ V,[K,,,+2K,,,—6iW,,—3GE,. . — E.,)]
+0V(4K,, -2V?>—3E,,) -6 W, W, —3(V,)’
—167T*(K,, — V) + V,,(2K,, +3E,,)
~V[4Vy+4K o+ E oy e +3(V, ) +167T 71} (92)

Then, expanding the density b, retaining terms up to O(k*), and finally
expanding the retarded integral operator R, we obtain

B =0 =I{2W,, )+ VK, +2K,.,,—6iW,,
37 GE o~ Eoo) ]+ O V4K, —2(V)'+(2m) ', ]
~6W, W, ,— V)~ 167T*K,, - V?)
+V 2K, —(2m) B,
~VI4V 4R o= 7 E e+ 3(V,,) + 16T 11+ O(K7/?)
(93)
Following an analogous process for the retarded integral that appears

in (59), we have

€= 10{2( W, ) —4aW, W, - 12aT*(K,, — DI, T - V?)

o~ ~ o ~ 3~ -
+ ‘/,a'|:_~4iW0',4+ va,a' +2KO’V,V +r (Evu,a' - E Vo’,v)]
ko

o ~ o 3 . 7 ~
+V[“127TTUU_3V44"3K0,,0V+—_ E,. yo-—_(Vo')2]
’ ’ 4ar ’ 207

+V ,[K,,— DL T —(47) 'V ,E,,
+(@&m) ' DI(V,V,+2VV )]
+0V[4K,, 4D, T’ -2V*+(2m)'E,,

—(2m) ' DIy V,,,f/,f,+z"/‘7,w)]}
—D,I.{ AW, ) ~aW, W, , —12aT*(K,, — V?)

-~ -~ -~

+ ‘I,U[ _4 Wv,r + K~VV,I_T+2K~(TV,V+4—. (Euv,o' - Evo',u)]
a
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-~

~ lod -~ 3 7 A~
+V[—127rT""+3V,, -3K,,0t—E,, W——(Va)z}
’ ’ 41 ’ 2

. . o o - 1 .
+V . [K,, —(47)'E,, 1+ V(4KW ~2V2+5— EM>} +0(k*
ko
(94)
and we also have
D€ = D,% - D,(&)+ 0(k*?) (95)

where € is the first term of the two into which € is divided, and ¢ is the
integrand between keys in the other. Now using the expressions obtained
in (63)-(95), we have for the coefficients of the components for the 4-force
the following expressions:

(a) From (54)

Agp, =[~4V+4R,, — V2 =2N] 8, +(V, -iD.D’LT*~K )5,

2

(b) From (55)

B,ps=i{4[V,— DI(T*V ) ~iDILT* - 1D’ L(T " +iT*V)]
~4(K ., —~ D, T)+(V?),+2[N,+ D2I,(T*V)]}6,
+4i(1 -2V Wy, ~ W, 2)+2(D, DL, T* — DyD?[, T*)
D, DLT* — DD LT +4i(K 5, — DI, T**)

1 - 1 ~ . 1 ~
5 (4K{3y - Eﬁ'}/) - <4KBI-L - EBu) + O(k3) (96)
T " T ¥

i o

i~ o~ o~ ~ o~ o
_;[EMBJ_DfIl(‘/,M‘/,B+2V‘/,#B)]+;(FB,.U-—Fﬂ,ﬁ)
—8iW, V5 + Ok (97)
(¢) From (56)

~ 1 1 1 .
C.=-V, +§ D,LD?IQT‘“—E DY, +5 D,DI(T*V,),

1 1 .
+E DMD‘,‘I4T““+§ D.DI(T” ,+T*V,),

o~ ~ 4 .
+4VV, —2VMDfIZT44—5 V,DI, (T —3T*V)

—4 "},MII(T“A‘Z;) —ZVD#D312T44—4WHJ
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2
+4D,1, Y, +2D}L(iT**) -3 DAL(iT*)

~

1 1

~R o= DDILT ™ +2 DDILT™
+4VK,,,+4K,,V,—4V DI, T* +8VW,,~12V?>V, = 'E,,V,
+7 'V, DI(V, V,+2VV, ) —4W,V, ——F +*D L3V, V,

+2(V,W,, -V, . W,)+2W,OV-VvOW,)]
—4(W2) ,+0s, +O(k* (98)
(d) From (57)

M- 1 .
Ay, = —1[ v, 3 D?IzTM—D,Il(T“V,,)
1 2 oa 1 447
—gD,II T _ET V) |0g,

.1 1
—4i[ Wey—35 D, DIL(iT*)+= DYD?I3(iT4”)]

—41VV637+81(WBV ~VW,,)—4iV,W,5,
21(1(,37, DI, T?")

[EB,/, DI(VV,,+2VV ) ]-i(R o — DI, T8,
—;" Fy,+O(K"?) (99)
(e) From (58)
Bigs= —(\”/){B+(VD%12T44),B+2VEII[T‘*ﬁ'{,%D,(TW—% T“\'/)]
+4R ., 5 +2D,DL,T" —% D,DI,T™ -2N,,
+ DDA L(T*V) —% DyDIL(T*V)

1 .. 1 -~ ~ o~ ~
__(VEo-cr),B +— ‘/,ﬁDfIl(‘/,ﬂ"/,G'_l_ZV‘/,(TU’)
o ar
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+16W(,(WB,U— U,B)+8x{,WB—w*‘%,B+0(k4) (100)
(f) From (59)

| | 1 ~
C,= i{ v, =3 DfIZT““—D,Il(T““E{,)—E Df[l<T""—5 T““V)
1 1
—gDI3(T44V), DI4T“4 DI,Z+3D2I1[(x x)Y,]
. 3
—;D“IS(T"" +THV,), }—3i[Km,,,—DfIIT"”]—EinIZT"‘r
+5’D?13T””+2i‘7x2,—i(/D?IzT‘*“
X7 44 ¥ 2i ~ 2 oo 1 44 7
—2iVD,I,(T v,,)—; VDI T —ET 1%
.2 44y 7 2i oo 1 447 \ 17
—iDX(I,T )V,,——?’—D,Il T —ET V)V,

+21[N +D211(T“4V) D S(T*V)+= D4I3(T44V)]
+4i¥{aWa—2iVUDfIZ(iT4")—4iV,[,II(Y,,)

+§’ V DAL(T*) = 2iW,D,D L, T* - 20iV>V, +8iW, W,

_l ‘7 {ﬁa”DrII[3 ‘20‘2?+2( ‘ZVWV,O'— V,VO’WV)
a

+2(W,OV-VOW,)]}+4iW,K .,
—I—VEW——VDII(V v, +2vva,,)+ ' VE ..
T

__l— VDIZII( ‘7,0"7,0'+2‘7‘7,a'ﬂ')+4i‘7,t1200'
T

~4iV DI, T +4iVK ., ~4iVD [, T —8iVV W,
+ir '[D,% - D*L(C)]+ O(k*”?) (101)

At this stage we have at our disposal in (96)-(101) the expressions for
the components of the 4-force in terms of instantaneous potentials. Taking
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into account (37), (41), and (42), it is possible now to determine the diverse
relativistic contributions of each order up to O(k’) both for the classical
force in the equations of motion as well as the equation of continuity. But,
in order to be able to do this, we must do the final step, i.e., we now have
to choose an Eulerian formalism for the description of the motion of the
material system or, what is the same, we must choose an Eulerian decomposi-
tion of the material energy tensor T . In this way, it also will be possible
to verify papers and, in particular, the equations obtained in Synge’s paper.
The Eulerian formalism that we adopt is

T* =pu,u,—S,, (102)
T**=ipu, (103)
T*=—p (104)

These equations express the ten components T of the material energy
tensor in terms of the Eulerian variables p (density), S, (stress), and m
(velocity). Equivalently, we may write (102)~(104) in the form

"

p=-T" (105)
u, =iT**/ T* (106)
Su,=THT" /T ~T* (107)

and regard this as a definition of the Eulerian variables in terms of T%.
With these variables we have for the first term of equations (13)

T, =pii, +u,(p+p0)—S,.. (108)
—iT* , =p+pb (109)

where 8 =u,,=u, , is the expansion and the dot means total derivative
with respect to time. Then, taking into account (37), (41), (42), and (96)-
(104), the equations of motion (13) take the final form

pit, +u, (p+p0)—S,,,=pV, + Y, + Y, + Y.+ 0O(k%)  (110)
p+p0=—pV,+Z+Zy+ Zy+ Z,+ O(k'?) (111)
where
Y, = (pu* = Su0) V., = 4(pty = S,y ) V.ot dpus (W 5 = W — 8,5 V.0)

+pD,(3D?Lp~2V*+K,,)+4pW,, (112)
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1 -~ ~ l ~
YL' = (pu2 - So.(,)(a' DfIzp - K,,,,) + (puﬁuy - SB‘Y)[<2K5‘Y "_2"—' ES‘V)
s T M

"

~ 1 . o - -
~z(2K,3,L 57 EBM) +8,5(-2DLp+4K,, — V2—2N),y]
sV
+puﬁ{8[( W= W, s)V+ W,V 1-2DI(D,L{pup) - DyL(pu,.)]

| - o 1 -
_;(Fﬁ,u_F#,B)-Z(ZKMﬁ—E;EMB)J

+8,5(—2DLp +4K,, — x"/z—zz\”/),,}

1 . 1 NI .
+pD, [ﬁ D}I,p—2VD?Lp +5 D?L(pu*— S, )+ 4V + W2)— &f]

o . 1 = 1 .
—pV,U(4K,m - E,w) +p|:2DfIZ(pu#) +— Fy]
r T K
~4pV(K ., +2W, ) +4pW,V, (113)
~ . 2
Y,,i = _4PV,M11(PV,:) +§ P“BDt{Dqufz(P“B) - DﬁD?I3(pu}L)
1 ~ ~ ~ o~
+6DrIl(puuuB_Suﬁ)—;DlIl(‘/,u‘/,B+2V‘/,MB)
. i .
‘8u3[6ll(p‘/,t)+4DtIl(pu2—SO'a'_E‘DV)]}

1 1 ~ 1
+§ th{E DthI3(p ‘/,!) _E D;LD$IB(pu2 - So’o')
~111,Y, —2D}L(pu,) —140D,D,D} L[ (pu,u, - S,,),, ~pV., ]

3 P o o P v v o~ ~
——-—D,Il[3V’HV’,+2(V,C,WU,,L—V,WW‘,)—I—2(W#E]V—VDW#)]}
T

. 1 ~ ~ o~
+4pV,aDJl[pu,Lua T Sue - (VuVa +2VV,0)
T

1 1 -
+~3- 6#(,(pu2—S,,,,+~2‘pV):l (114)
Z,=—(pu*~S,,) V,— 4 W, (pugit, ~ Sp,) + pusDg (4K ., — V> =2 N)
+pD,(3K,, —2N = V2 ~1D?L,p) ~4pV W, (115)

Z,=—pDI(pV,)+3pD?L(pu* = S,, +3pV)
—-3pD}L,(pu’~ S,,)+2pDT,(pV) (116)
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1 ~ . o~ .
Zy=~7 (pu* = S,) D7 Lp —4(pu’— SW)( VW, +VV, +- Kw,t)
+2(pugu, — sﬁy)[4( W,V,— VW,,)— D,D}L(pus)
~ 1 - 1 ~
‘KB%!"'E EBVJ"—; FB,V]
+pup[16( Wy o — W, 5) W, +8V, W, ]
+puBDﬁ [ - VDHzP + Dﬂz(lmz ~So0) — IOPD%IZP
o 1 ~~ ~ ~ o~ o -
—D%Iz(pV) -—VE,, +8 W2-4VK,,+8 Vi-n! ]
T
4 3
+pD, [ DIs(PV )— D I4P+2 D Iz(Pu Sos)
_IOPD$I2P - Dflz(PV) - W_lcé:l
(7 2 (72 1 - %
+pVD,(—D,Izp +10V*——E,, —4Km,)
T

E)

*2/{ V,D*L(pu,)+ W,D,D;Lp +4 W, W,

3 |-

+p\'{,<—D%12p—4IZW—

1 ~ -~ o~ -~~~
+o - v, F, 2W¢,KW,—4VV,(,W(,] (117)
~ 1
Z4=_(puz_saa)DtII(p‘/,t)"_g(pu2 ao’)D211|:4(pu )+2pV]

2 3
+(pugt, — Sg, 3 D, D I;(pug)

+2D?1(pugu, S,gy)— DZII(V v +2VV,;7):I
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1 .
—2pugDy [5 DiL(pu*-S,,)+ LpL,(pV,)

1 ~ 1 1 -
s DiL(pV) ~3 IoDJx(pu2 =80 +5 PV)]

o ~ 1 1 -
+2puﬁ‘{B{Il[—pX{,+§ D,(puz—S,,U-I—EpV)J

1 P o o
+5_ D)‘Il( ‘/,0"/,0'+2VV,0'0') +2DrIl(Pu2— Sa’o’)}
w

~ ~ 1 1 -~
_ZPVDt[Il(p‘/,I) -3 DI, (pu’~ Sw+5 pV)

1 o~ o~ o
“2—DJ1(V,aV,g+2VV,w)—2D.11(pu2—5w)]
ks
. |1 s 1 -1 1 .~ oa s
+2pV D3 = L| H(pu* = S,,)+=pV | +— L(V V, +2VV,.)
’ 3 2 29 o ’
1 3 2 1 !
+th IIZ_EDIIZ;(pu ~So'o')~§DtII[(xa_xo')Yo']

1 ~
+Ea D?ISDU[(pua'uV),V - SO'V,V - (p‘/,tr)]

~ 1 1 =~
—ZIo[pll(pV,,) +§ pDJl(puz— Saa+5 pV)]

1 ~ 1 ~
+Dz11PDfIzP+§Dfls(pV)—;DJl(C)}
. 2 1 . .
+pV, 412Yg+§Drlz(pua)+;DJl[3V,aV,,

+2AV W, -V,  W)+2(W,OV-V1D Wa)]} (118)

As can be seen in (110)-(118), the decomposition used has the advan-
tage that the equations of motion take an analogous form to the Newtonian
ones. In fact, in the first three equations (110) may be seen the Newtonian
equations of motion modified by the relativistic corrections Y,, Y7, and
Y., and in the fourth we see the equation of continuity with the terms Z,,
Z,, Zs, and Z,, indicating change of mass. The first corrections go to O(k”)
and the second to O(k'"/?). The Y, is of order O(K?), Y/, is O(k*), Y/ is
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O(K°"?), Z, is O(k™"?), Z, is O(k*), Z is O(k*?), and Z, is O(k®). The Y”
is the radiating term of the equation considered by Chandrasekhar and
Esposito (1970) and by McCrea (1981) in connection with the quadrupole
formula.

As Synge pointed out, there are advantages in this form of the equations
of motion, such as the possibility of introducing additional bases of approxi-
mation in the physical situations in which S,,, and u,, are small. The concept
of rigid motion and the junction conditions appear in a very natural form
with these variables. If the motion is rigid, then u, must be a Killing vector
satisfying

u,,+u,,=0 (119)

and the appropriate boundary conditions on the three-dimensional surface
in which matter is confined is expressed by T*n, =0, where n, is the
covariant normal to that surface. Then, when a post-Newtonian formalism
is used, it is easy to carry the results expressed with our variables to this
formalism and see how, for instance, the approximate rigid conditions used
in it may be derived in a natural way from (119). The fact that the only
approximations introduced are in the right-hand side of equations (110)
and (111) is, in short, the main advantage of the Eulerian formalism used.
On one hand, as may be seen in (110) and (113) when the O(k*) and
O(k”?) terms Y/, and Y, are suppressed in (110) we have Synge’s first
three equations of motion in third approximation [cf. equations (1.61) and
(1.62) of Synge (1970)]; on the other hand, in (111) and (115) and the first
two terms of (116) we see Synge’s fourth equation of motion [cf. (1.61) and
(1.63) of Synge (1970)]. This is so because, although the term Z of Synge’s
fourth equation in O(k"’?), two terms in it are O(k*) and naturally they
appear in our approximation in the term Z,, which is O(k*). So, with
respect to Synge’s third-order equations of motion, there are in (110) two
more terms Y/, and Y7 that are O(k*) and O(k®?), respectively, and in
(111) there appears in Z, all terms O(k*), and in Z; and Z, the O(k*’?)
and O(k”) corrections, respectively. Now, with the equations of motion in
fourth approximation we are in a position to apply them to a great variety
of problems, such as the study of orbits in concrete models, the two-body
problem, and, in general, models corresponding to any situation of physical
interest,

As an example let us considerthe case of a perfect fluid with spherical
symmetry and static. In order to apply these equations, first we must
determine the value of the potentials appearing in them in terms of the
functions that characterize the generating system of the field. Taking into
account that this is static, the components of the metric tensor (49)-(52)
are given by

Zop =[1+2(V+ V? =K, )]8,5+4K 5+ Ep+ O(K) (120)
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ga4= 0 (121)
8= 1-2V+2V2-2K,, +4K,, V-4V + 4+ O(k* (122)

because W, and F, are null in this case. The potentials (21), (23), and (24)
are given by

V= —J THx) [x—x'|"" dsx’ (123)

K.p= j T*(x) |[x=x'|"" dsx’ (124)
1

Eaﬁz_—J (‘{a‘{3+2V‘{aB)Ix—X'[_1 d3x’ (125)

and for (89) we have
1 1
&f e —— JV [—87TT44K0.0. _87TVTUU+2V,0'VKUV.+§V,UVE‘7V
o

“2VK 41,00 =3VE 3,0, + VVL+RT V] |x—x'| " dix’  (126)

Clearly, whereas the density functions in (123) and (124) are of compact
support (and so their respective integrals are extended over the domain ¢
occupied by the material system), the density functions in (125) and (126)
are nonnull all over the space (in fact, when the distance r increases, ta:y
decrease like r*) and so their corresponding integrals are also extended
all over the space.

Since in the system we are working with, G = ¢ =1, we have for V the
value

V=M/r (127)
where r=|x| and M is the mass of the material system given by
M=J- T* dyx' (128)
In order to determine K, let us denote by p(x’) the distribution of
pressure inside the material system. We then have
T =p(x')8,s (129)

and

g,
K.p =—"J p(x") dsx’ (130)
r <
Now, for the calculus of p(x’) in the order of approximation we are
considering we have to solve the equilibrium equation
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p,m :p‘/,oz + Tao‘/,a _4Taﬁ‘/,B _4PVV,a +pKaa',a+ O(k4) (131)

which in turn requires previous knowledge of K, inside the material system
and in the former approximation. Since the hydrostatic equilibrium equation
in this approximation is given in polar coordinates by

dav
d—};%‘Q:p"d';'f‘O(k}) (132)

then, using the value of V inside the material system, which is given by
V=3aT*(3R*-r) (133)

(where R denotes the system’s radius) and the boundary condition p=0
atr= R, from (132) and (133) the following pressure distribution is obtained:

p(r)=3a(T*“P(R*~r%) (134)
So, for the former approximation k
4 R
K, = ——':7—T(T44)2 J dr' (r*—=Rr)[r*+ 1" =2rr cos 81'?|7+ O(K*) (135)
0

Now, if we take into account that
2r it r>v

24 420y 9 1/2={ 136
[+ 1" =2n" cos 6] 2r it r<r (136)

then from (135) we have

1 R*
K,, = —4772(T44)2[——1-16 r4+§ Rr*+ <7~ Rﬂ +0(k* (137)

Carrying then (137) to (131), we finally have the following differential
equation:

%}4— arp(r) = br+cr’+ O(k*) (138)

where
a=—37T*"rp(r)= O(k?) (139)
b=—37(T*)+Z7 (T*PR*-37*R(T*)* = O(k?) (140)
c=-E71(T*)>*=0(k% (141)

The solution of (138) [with, as before, p(r)=0 for r=R] is

b 2 2 2 b 2 2 4
p(r)= [;——a—c-i-ng] exp[(R —-r )gj] + [;—;§+§- r ]+O(k ) (142)
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Then, substituting (142) in (130) after a McLaurin series expansion of the
exponential function in (142), we finally have the value of K, 4 in the desired
approximation:

37 (2 10

Sap| ™ . 0> ( ) 3} 4
== o M T +
K.z . [SR M SR 7 M O(k*) (143)

Now, in accord with what has been previously said, the value of E,;z
must also be obtained. E,; must be a solution of the differential equation
7x,.x 6,
AE., =4M2<16—£—2~f> (144)
r r
which, due to the symmetry of the model we are considering, must be of

the form

Eop=—8.5f1(r)+ (xux5 =38, ) fo(r) (145)

Then, taking the Laplacian of (145), from (144) and (145) we obtain the
equations

&A(r) 2 dflr) _ 4

vy 146
ar’ rodr 3 V) (146)
d’ d 28
L) 6 D) 28 (147,
dr rodr r
Using then the boundary conditions
lim fi(r)=0 (i=1,2) (148)
we obtain the following as the solution of these differential equations
2 M2 L88
filr) == T (149)
r 3 r
21 M? 28 M?
o — e —
S s Aty L (150)
where &€ and L are constants given by
€=-3M?/5R (151)
L=%R (152)

Carrying then (149) and (150) to (145), we finally have for E,; the value

31M2 8 & 28 M? ) (21M2 28 M?
E, = S L)gs—| = - —1L
s (15 r? 3 r 15 P s P )x xs (153)
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Finally, in order to obtain the whole expression for the gravitational
field we are considering, we need the value of &. In the previous calculations
we have only used symmetries and the weakness of the field. But now we
know that if f(x) is a function that decreases like r~* when r- o0, then

Jf(x)|x x| dyx’ ——Jf(x) d;x"+O(r *logr) (154)

the integral being extended all over the space. So, maintaining the principal
part for large values of r, from (126) we have

1
= {3 J (~T*K,o — VT ™) d3x’+j (7 'VVL+8T*V?) dyx’

+2m)™! J (Z0uVon = VEu) dax'} +O0(Kr2logr) (159

where
3.5 =4K,;+Eop (156)
The first integral in (155) is equivalent to

8 JI dyx' dyx" [T*(x) T (x")— T (x)T*(x")]|x-x|"" (157)

which, due to the spherical symmetry, is null because it is extended over
all the space.
Using the integration by parts, we obtain from the second integral

0 J TH(x")VAX') dyx' (158)
that is,
54 M*?
—— 159
9 R2 ( )

and finally applying again the integration by parts and the condition that
2,.» and its first derivatives are null at infinity, we see that the last integral
in (155) is also null over all the space. So, far from the generating system
of the field, « is given by

.ﬂ——IF~+O(F210g r) (160)

The potentials (127), (143), (153), and (160) determined the metric
tensor (120)-(123) of the space-time in the order desired. As may be seen,
these potentials are given only in terms of the mass of the generating system
of the field. The potential 2, is given by

2,5 = P18up T PaX,Xg (161)
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where
47 M? 31 M? 8% 28 M?
m—— e =~ — L+ O(k® 62
¢‘5Rr15r23r15r3 (k%) (162)
21 M? 28 M?
b= 3+ 5 L+ O(K) (163)
5 r 5 r

Now, carrying (127), (143), (153), and (160) to equations (110) and
(111) we can obtain the equations of motion for a particle moving in this
field. To do this we only need to add the hypothesis that the particle does
not modify the potentials already obtained. Neglecting, then, the self-
potentials of the particle and taking into account the static character of the
field, from (110) and (112)-(114) we obtain the simpler equations

U, =V, -4V uu,+V u’'-2(V?) +K,,,

uhutp

1
+4(V?) = K o, u’— 4K, u,u, - E,.V,

wp,vtyu

1/2 1
+2K ., U u —-2-(—E —; Ew,p)u“uv

puv,pHuty up,v
ko

~4VK ,,— 4K,V — A, + O(k*) ‘ (164)
with V, K.z, E.p, and & as in (127), (143), (153), and (160).

These equations have obviously two first integrals, from which we can
obtain the trajectory of any particle. In fact, since the field is static, we have
the integral of energy

su'=E+V-5V*+K,,—~6EV+14V*+9VE*-6VK,, + 18EV?
—2EK,,—3E*+2E’—3(E,, +4K,,)u,u, —34+O(k*)  (165)
and, due to the spherical symmetry, we have the integral of angular-
momentum
rP¢=h[1-4V+8Vi+E>~¢,]+O(k"?) (166)

(their derivation can be found in Appendix C.)
Combining then (165) and (166) in the usual way (see, e.g., Gambi,
1985), we obtain for the trajectories the following equation:

dg)z _2< 3 2) _2[ 3w, 9 (1 5)
=) =2 E-ZE*)+2h | M+2EM +— M*+— | —-Z|M>
(de 2 5R 2R*\5R 7

27 8 59
— == EM?*+7E*M —~ E€+— 3]
5R 7 3 8R2M ¢

124
+[—1 +2h‘2(3M2+—1g5— EMZ—g M%+%T M3>]§2
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8 4 184 56
+ ——%+-—M2+2h‘2(—M3——M2EL>] 3
[ 3 SR 15 15 ¢
32 0, 1250 3 :] 4
+| —-= -——hM
[ 15M 15 h L¢
56 245 3.2 1
+E LM £+ 0(k’r “logr); r=E (167)
In it we can see the classical term
E2-2hHE+V) (168)

and the terms corresponding to the fomer approximation
-2h(2K,,+6V*+6EV~3E? (169)

In order to see the behavior of these trajectories, let us calculate the
advance of perihelion of any bounded one. If we denote the apsidal points
by & and &, (with 0< & < &), we know that the apsidal angle is given by

&
A6 =J [—-F(&)]7"? d¢ (170)
&

where F(£) is given by the right-hand side of {167).
In order to avoid the singularities in the integrand, we write F(¢) in
the form

F(§)=§2—2Mh‘2§—2Eh‘2+‘i a,t*+0(k*r?logr)  (171)

a=0

where a, is the coefficient of £%, having removed the first three terms in
(171). Clearly a,, a,, and a, are O(k), and as, a,, and as are O(k®).
Writing now F(§) in the form

F(&)=[€—(&+&)E+ELNL+G(O)] (172)

where
(”‘2th2+§1+§2)§—(§1§2+2Eh_2)+>:i:0 a,&"

G(¢) = 173
© (E—E)(e-&) (173)
and taking into account that F(§,) = F(§,) =0, we have
5 @ 5 o
—2Mh_2+§1+§2=§120‘:0 o7 — &2 V=0 da) (174)

si—&
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5 a 5 o
2Eh—2+§l§2=§l Za=0 aa§2 §22a=0 aafl (175)

§1_§2

from which we deduce

L8 (- E)E - ) F(E-E)(E -7
Glé)= 1 2 (& -&)(E—£)(E-&)

(176)

Using now the binomial theorem, we have from (170) and (176)

B £ 1 —1 E ; :l 3
AB_L. [(fl—f)(f—gz)]‘”[l 5 G+ G () | de+O(K)  (177)

ie.,

124 8 2
Af =S, +h‘2(3M2+—15— EM?—~ M%+7;'—’ M3)S2

3
A 2w (184 56 L)
+|: 3%’+5RM +h (15 M 5 MEL)]S;
16 . > _52 -2
_(EM +15h M3L)S4
+§ LMZSS+%(h‘2M2)ZS6+ O(k*r?logr) (178)
where
[ eaear
S = - 79
LG De-a17% (175)
£ (E-E)E-E)F(E-E)NE - &) -
S = d =2,...
’ L -6 e BN - % U=2-9
(180)
2 -3V +(E-ENE-EDT
Ss= d
‘ L, (G- (-0 - ETTE - (E— )T 7 % (181)
Taking into account that
—2Mh 2+ &+ &=0(k) (182)

—2Eh™* = £,6= O(k) (183)
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a direct calculation of (179)-(181) gives

S1=S2=SG=7T (184)
S;=37Mh >+ O(k) (185)
S,=wM*h*+3Eh™ %)+ O(k) (186)

Ss=m(SM>h *—3M*h™*+3EMh*-5Mh )+ O(k) (187)
So, the advance of perihelion is
32 7°

8
0=67M*h *+ 87TEM2h_2+§ W%Mh_2+? —1—{— M3

14 364 23
+(91 -3 L) 77M4h‘4——1—5~ 7TL15M3h““——4—5§ aLM?h™>

224
+—1—5— aLM’h °+ O(k’r *log r) (188)

As can be seen, it includes all the relativistic corrections, such as the
Schwarzschild advance, that correspond to the former order of approxi-
mation.

APPENDIX A

Equations (13) may be written in the form

T, =X, (A1)
where
X, =~ (T 438, T8 +36,. L) T + O(K%) (A2)

I';. being the Christoffel symbol of the second kind with respect to the
metric (35), i.e.,

T =38 (Zbnet ehp — Ehen) (A3)
where
8ab = 5ab+pab+qab+rab+o(k4) (Ad)
with
Par = O(k), Gab — O(kz), Tap = O(k3) (AS5)

With the order of approximation considered we have

g"" = Oab — Pab — Gab — Tab + PatPis + 2Paiiv — PatPim Pmb + O(k4) (A6)
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Carrying then (A4) and (A6) to (A3), we have
Ig.= %(pab,c tGabeT Favet Pacet Gact T Vach ~ Poeca —dbea ™ Toe,a
—PanPoihc — Pandvhc — ParPchp — Pard chp T PanPbeh + Parbe,n
~GhaPohc ~ GanPch bt GanPben + ParPinPonc + PatPnP chb ~ PatPnP be,)
((A7)
Then, taking into account (A2), we have
Xo=~1Pade T+ GPoea=Pabe) T + (G PonPran = 3Gmn) T
+(PanPonc =3 PanPbon+3qbca = Gas,) T
_%rnn,c T + 3 Pamam ), T _%pdlplhpdh,c T —(rape —%Vbc,a) T
FPam bm,c T —5( Pandvcht GanPoen) T
+qanPonc T™ = PamPrnPone T +2PamPrmnPoca T+ O(K°)  (A8)
and from here we have (38)-(40).

APPENDIX B

Initially the expansion for V is

. 1 1
V=V+D,1I, T"4~E D312T44+§—’ DL+
1
4
the intégrals being extended all over space. Now since the density functions
are supposed to be of compact support, these integrals may be extended
only over the region v occupied by matter. Using Synge’s third-order

equations of motion

pti, +u,(6+p8)—S,,.,=pV,+Y,+0(k* (B2)
p+po=—pV,+Z+0(k") (B3)
with definitions (105)-(107), where Y, and Z are given by (64) and (65),

respectively, we can evaluate these integrals in the following way:
For DI, T* we have

1
D;‘14T44+§ DL T*+O0(k" (B1)

DI, T*= J T*, dsx'

v

—_ j [T44__ i(T44’“T;44)/ T44] d3x’

= j Li(T“TH /T, +T*V,+Z] dyx'+ O(k?)
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= —J‘ T44‘7’, d3x’—'[ Z dox'+ O(k*?)

=-I(T*V,+2)+O0(k""?) (B4)
On the other hand

1 1 [ .
gD313T44=—gD, L(THTH/T*) . +(T*V,) ,+O(k)]|x—x'|" dsx’

.

1 v * V
== D | [(T*, + TV, = Y, +(THV),

+O0(kH)]|x—x'|* dsx’

1 [ . .
=—¢D (T, + T*V,) . |x—x" dsx'

1 1 .
+g D,J Y, . lx—x d3x'+gD%13(pV,)+0(k“) (BS)

But

J (T*,+ T‘”f/,u),M |x—x'|* dyx’

=2|:J T d3x’+I x, T4V, d3x’—J x, THV, d;,x’]

=2J T d3x’—2l[ x, T*V,, dx’ (B6)

because

J TV, d3x’=J T44(T44)’(x i;) dyxd;x'=0 (B7)

|x—

Now

—J X, TV, dyx'
v

[ -~ Xo

= XL.T44[JV (T44)’Ix BE d3X:| d3x’
Ju v X—X |
r x, —

= J T*(T*)x f,‘ |3 = dsx dayx'

[ ] e da
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1 o~ X )Xo — X5
=5J’ J T*(T*y & &_xf,ls > )dgxdgx’
1 44 44Ny =1 ’
=——E T*(T )|x——x[ dsx dyx
1 44y, ’

then

J‘(T'“gy+ T#V,), |x—x d3x’=2j T””d3x'—j T*Vd,x' (B9)

v

On the other hand, since

j Y, . |x=xdyx'=2 J (%, ~x,)Y, dsx’ (B10)

v

then, taking into accout (B5), (B9), and (B10), we have

1 1

oo 1 7
ED?I3T““= 3 DI(T -3 T*V)

1
+§ D, J (x,—x,)Y, dsx’'

1 -
— DIL(T*V,)+0(k) (B11)

On the other hand, since

1 1 14 X7 r ’ \
o DIL,T= T D? J (T* ,+T*V,) . |x=x|"d;x'+0(k*) (B12)

then, taking into account (B4), (B11), and (B12), we have finally
. . 1 1 1
V=V I(T“V,+2)~> DILT*~ D,11< T3 T““V)
1 7 ' 1 2 44y
+§ D, | (x,~x,)Y, dsx —gD,I3(T V.)

1 1 ~
a0 D‘,‘I4T44—§ D}I(T* ,+T*V,) . +O0(k%) (B13)

that is to say, (63).
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For the potential W, we initially have
W, =W, +iDI(T*)—3iD!L(T*)
+LHDIL(T*)+ O0(k™"?) (B14)
but, since from (B2) we have
i(T*),=T* ,+T*V, - Y,+0(k% (B15)
then

iDI(T™) =i J (T*), dsx’
= J (T* ,+T*V,~Y,) dx'+ O(k*

- _j Y, dyx'+ O(k*) (B16)

with which (B14) becomes
W, =W, - L(Y,)-iD?L(iT*)+ D L3T* )+ O(k"?)  (B17)

that is to say (69).
Now with V and W, given by (B13) and (B17), respectively, the
remaining expansions from (67) to (95) are easily derived.

APPENDIX C

Since the gravitational field we are considering is static, the Lagrangian
Z does not depend explicitly on time and so the following quantity is
conserved:

F—u, 0L/ou (C1)
m 1

Then, we can write
1
fé’“(ﬁé’z—EuM aff/auﬂ) —-1=E (C2)

where, taking into account (14) and (102)-(104),
L =14+ Yas= (8 + Yoottty + O(KH] (€3)
Now, expanding ¥, we have _
F =1 _%(744_ u’— 'Y,w”yuu)
(Y2~ 2Yask’ = 2 Yasthth, + ut + 2,0, u,u%)
—%(yi4—3y§4u2+3'y44u4— “6)+ O(k4) (C4)
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and then, carrying (C3) and (C4) to (C2) and taking into account (120)-
(122), we have

E=3u"—V+§V? =K, +3Vu’—ju’K,,

+ VK, +3ut+5Vi?-3vi+ 3wt

+3(E,, +4K,, )u,u, +15u’+350+ O(k*) (C5)
Finally, if we take into account that

u>=2E+2V-10V?=3E>+2K,, —12EV+O(k?) (C6)
then, from (C5) and (C6) we have
W=E+V-5V?*+K,_ —6EV+14V3+9VE?
—6VK,,+18EV?-2EK,, —3E*+2E°
~3(E,, +4K,, Yu,u, —34+ O(k*) (C7)

that is to say, (165).
On the other hand, due to the spherical symmetry, the following
quantity is also conserved:

X, 0F/8%, — x5 0L/ 3%, (CR)
We can then write
a%-—1["X1gZ;L"x‘:‘u. - xnglxu + i(x1g24 - x2g14)] = A (C9)
where, as before, ¥ is given by (C4). Then, using (102)-(104), (120)-(122),
and (161), from (C9) we have in polar coordinates
2 ; 9 2 w7 2,3 . 7/2
A=r'¢| 143V+0 Vi= Kyt Vit D ut+ 6, [+ 0(K7%)(C10)
with ¢, as in (162).
Now, since
AE =r*$[1+4V+EJE+ O(k"? (C11)

defining h by
h=A(1-E) (C12)

from (C10) and (C11) we have
ré=h[1-4V+8Vi+E - ]+ 0(k?) (C13)
that is to say, (166).
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