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Equations of Motion in Fourth Approximation 
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The equations of motion in fourth approximation for a system of massive bodies 
of finite size moving in the gravitational field of the system are obtained. 

1. INTRODUCTION 

The purpose of this paper is to obtain equations of motion in fourth 
approximation for a system of  massive bodies of  finite size moving in its 
own gravitational field by means of  Synge's approximation method (Synge, 
1970). 

In earlier papers, Synge's method has been applied in third approxima- 
tion to the study of the motion of several systems of  massive bodies and 
their associated fields (Hogan and McCrea, 1974; McCrea and O'Brien, 
1978; O'Brien, 1979; Gambi, 1983, 1985; Gambi and San Miguel, 1986) 
and in fourth approximation to the study of  the lowest order radiation terms 
in connection with the quadrupole formula (McCrea, 1981). 

Synge's third approximation includes Chandrasekhar's (1965) first post- 
Newtonian approximation and goes part of the way from that to the second 
post-Newtonian approximation of Chandrasekhar and Nutku (1969). The 
post-Newtonian approximation (PNA) was first carried far enough to give 
radiation terms by Chandrasekhar and Esposito (1970) and subsequently 
put on a more systematic mathematical basis by Anderson and Decanio 
(1975). 

The main difference between Synge's approach and that of  Chandrasek- 
har and of Chandrasekhar and Nutku lies in the gauge conditions used. 
Whereas the conditions of these authors lead to Poisson equations and 
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instantaneous potential solutions, Synge's conditions lead to 
inhomogeneous wave equations and retarded potential solutions as in the 
scheme of Anderson and Decanio. In this respect, Synge's method is closer 
to that of these authors, although their gauge conditions and corresponding 
energy pseudotensors are also different. Furthermore, the convergence of 
all the integrals appearing in Synge scheme is guaranteed from the beginning, 
including those which occur when the retarded potentials are expanded in 
terms of instantaneous potentials (Synge, 1970; McCrea, 1981). 

Synge (1970) contains explicitly the equations of motion in third 
approximation, which have been applied to the study of the motions 
mentioned before. In this paper we develop Synge's scheme to one further 
stage, obtain the equations of motion in fourth approximation, and then 
apply them to a concrete model. 

2. NOTATION AND GENERAL METHOD 

For details of Synge's method the reader is referred to Synge (1970). 
For a given energy tensor T ab we generate a sequence of metrics 

gab=tSab+Yab,  (m =0, 1 ,2 , . . . ,  N) (1) 
m rel 

by the recurrence formula 

* _  rs n a b  y ~ - - 2 K K . b  , (m = 1 , 2 , . . . ,  N )  (2) 
m m - - 1  

where 

and 

r*~ = Ya~- �89  rdd (3) 
m m m 

H ab= T ab + K-1G ab (4) 
m r n  

~.b is the truncated Einstein pseudotensor given by 

d~b = Gab _ Lob (5) 
m m 

where L~b is the linear part of the Einstein tensor G ~b for the metric Yah 
m m 

and K ~  the operator defined by 

K tabs = --6ar6bs J + J(t~arDbs + 6hsDor - 6obDrs)J (6) 

where Do and D~b indicate partial derivatives of the first and second order, 
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respectively, while J is the inverse D'Alambertian operator defined by 

Jf(x, t ) = - ( 4 ~ - ) - '  f f(x,, t-lx-x'l)Px-x'[-' d3x' (7) 

Latin indices take the values 1, 2, 3, 4 and Greek indices 1, 2, 3. 
In order to introduce approximation we must have some estimate of 

the orders of magnitude of  the physical quantities involved in the problem 
under consideration. Having obtained this estimate in a common unit (the 
second), we express all these magnitudes in terms of a single parameter 
k < 1 of order of the rate mass-size for the material system (Synge, 1970). 
Assuming provisionally that 

T ~ = O ( k )  (8) 

we then have from (2) 

7ab = yah + O ( k m ) ,  (m = 1 , 2 , . . . ,  N )  (9a) 
m m - - 1  

and 

d , b  = &ab + O(k,n+,),  (m = 1, 2 , . . . ,  N )  (9b) 
m m - - 1  

To estimate the error in the Einstein field equations we have the error 
tensor in Nth  approximation defined by 

Eab = La b _[_ ~,~b -b KT ab (10) 
N N N 

Then, if we terminate the sequence (2) at the Nth  term, we can make this 
Nth  term satisfy Einstein field equations with an order k n+l error, i.w., 

E = O ( k  N+~) 
N 

by requiring T ab to satisy the equations of motion in Nth  approximation 

  b,b=0 (11) 

These equations are equivalent to 
Tab~b = O( k n+')  (12) 

where the N below the stroke indicates that the covariant derivative is 
calculated with respect to the metric tensor in ( N - 1 ) t h  approximation. 
They are called Synge equations of motion in Nth  approximation. 

With this scheme we can derive in a systematic way approximate 
solutions of Einstein field equations and equations of motion to any degree 
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of accuracy we wish. Note that for equations of motion in the Nth approxi- 
mation we only need the metric components to O(kN-1) .  Next we shall 
relax this requirement when we consider the separate components of these 
equations and the different orders of magnitude for the components of the 
energy tensor T ab . In the present work we consider equations of motion in 
fourth approximation. 

3. THE EQUATIONS OF MOTION 

In accord with what has been said, the equations of motion in fourth 
approximation are 

ab  - -  --1 . ,~ab T ,bl-K ~ ,b=O (13) 
3 

Then, assuming that 

T'~ = O( k2), 

we have 

and 

T a4= O(k ' /2) ,  T 44= O(k)  (14) 

Tab = Tab + O(k3) (15 )  
3 2 

~ab = t~2ab + O(k 4) (16) 
3 

where 7~b and Tab are the metric deviations of second and third order, 
2 3 

respectively, and ~ab and ~ab are the truncated Einstein pseudotensors 
2 3 

associated with these deviations, respectively. 

In order to calculate ~ab with an error O(k 4) it is enough to dispose 
3 

of the metric in second approximately. By equations (38) of Synge (1970), 
this metric may be written in the form 

where 

gab = t~ab q- Tab (17) 
2 2 

Y~t3 = 2(  V - K,~,~ + V2)6,~ + 4K~t3 + E,~# + O(k 3) 
2 

Y,~4 = 4 i (  W,~ + F~) + O(k  7/2) 
2 

Y44 = - 2 (  V +  K ~  - V 2 ) +  O(k 3) 
2 

(18) 

(19) 

(20) 
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and 
V = - R T  44= O ( k )  

W~ = - i R T  ~4= O( k 3/2) 

K~,~ = R T  ~*~ = O ( k  2) 

1 
E.~ = - - -  R( V~,V~ + 2 VV,~.~) = O(k 2) 

77" 

with 

i 
F.  = -~--~ RE-3 V,,~ V,4+ 2i( V.,. W,~,. - V.o. W~) 

+2i(W,,  [ ]  V -  V[N W~) = O(k '/2) 

R = -4.n-J 

Then ~.b is given by (McCrea, 1981) 
3 

d ab = Mab -- TrsLrabs + l y~bL*~ + 6ab ")%Lr* 
3 2 2 2 

-(T2arL*rb + * TbrLra) + ym,,[rb, m][ra, n] 
2 2 

--�89 Y m n [  rS, m ][ rs, n] - T r s M  rabs + Trp) 'psLrabs  
2 2 2 2 

1 
+ 6oh ( %~M*s - %p'fpsLr* - ~ ~/rs'YpqLrpqs) 

2 2 2 2 2 

--YobtSmpp %.L*.) - (TbrMm + "/~rMrb) 
2 2 2 2 

+ ] /bpLraps)  - -  g3'a,%sL~r) + ")/rs ( '~apLrbps 1 * 
2 2 2 2 2 

+ v~,.~sL~* + ~ ,  (rorL*, + r~L*,) + O (k 4) 
2 2 2 2 2 

where 

L a b c d  = - -  Tac,  bd - -  'Ybd, ac)  l(  Yaa.bc + Ybc, aa 
2 2 2 2 

Mabcd = [ad, m][bc, m ] - [ a c ,  m][bd, m] 

L b s  = L m b c m  1 - -  ~(~bc L . . . . .  L *b~ = L m b c m  

--56bcM . . . . .  M*b~ = Mmbr M b ~  = M mbcm 1 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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([ad, m]  are the Christoffel symbols of the first kind). From here we have 
the following expressions for the terms needed for our purpose: 

G 4 4 = 3 ( V o - ) 2 q - 4 V ] 7  V - 4 W o - ~ , ( W , ~ , v -  W~,,~) 

- 4 i V , , ~ W , . , 4 -  2 V. ,~Kv, , ,~-4 V.~K . . . .  

- 3 ( V 4 ) 2 - 8 K ~ [ ]  V + 4 V , , ~ , K o . , , + I O V ( V , ~ ) 2 + 4 V 2 [ ]  V 

+(3E . . . .  - E . . . .  ) V o- 

+ V,,~E,~,, + Eo-,~ [] V +  O(k 4) (32) 

d~4= -6K,~v4+4ivo.w,~,o 

+4i(W,~ [] V - V [ ]  W , ~ ) - 4 i V , ~ , ~ W , ~ + O ( k  7/z) (33) 

G ' ~  = - 2 V ~ V t3 + 3 ( V,,~ ) z 6~t3 - 4 V V  ,~t3 + 4 V �9 V 6,~t3 

+3( v4)26~ - 2( V~K ~,~ + V~K~.,~) 

+ V,,~(-8K~t3,,~ + 4K~t3,,~ + 4K,~,~,t3 + 4K~, ,~6~ ~) 

+8 W~,~ W~,~ + 8 W~,~ W~,~ + 4iV.4( W~,~ + W~,~) 

+ 8 ~ t 3 ( - l Z  W,~,~ W,~,~ + 4 W,~,~W~, ~ - 4  V,~K,~,~ 

+2 V,~K ~,~ - 4iV,4 W,~,,~ + 4iV,,~W,~,4) 

+4 W,446a/3 + 16 W,~W,~,,~o 

+ 6 , ~ ( 2 V K ~ , , ~ , ~ + 2 V , . , ~ K ~  - 4 V , ~ K ~  -- 8 i Wo.V,o-4) 

+ 4 V ( K ,~,~,t3,:, + K o-t3. .,~ - K ,~t3, o-,~ - K . . . .  t3 ) 

+4(  v o,~/,;~,~ + v~,/,;~,~ - V,~K~,~) 

+4i(  V,,~4Wt3 + V , t 34W,~ ) -4 i V (  W,~,t34 + Wt3.,~4) 

- 8  Wo-( W,~,~3,~ + Wt3,,~,.) - 166,~t3 Wo- [] Wo- 

+8(W,~ [] Wt3 + Wt3 [] W , ~ ) - 8  V ~ K , ~ - 4 K , ~  [] V 

+Sr [] V ) -  6 V(V,~)26,~j3 + 4 VV,,~ V,~ 

- 8 2  V,,~t~ - � 8 9  K~E ~,~3 + V ~ E  . . . .  - 2 V,,~E ~,t~,o- 

+ V,,. (E,~,~,t~ + E~,.,.) + V,,~(3E . . . .  - E . . . .  )6~,# 

- V,~E,~6,~e - V.,~t3E,~ + V c,,.Et3,. 

+ V ~ E ~  + V(E ~,,.~,~ + E ~ . o ~ -  E . . . .  ~) 

-E,.t3 [] V +  6,~t3E,~ [] V +  O(k 4) (34) 
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where 

Writing now the metric tensor gab in the form 
3 

g.b = t~b + Pab + q~b -t- tab -k- O ( k  4) 
3 

(35) 

Pab = O ( k ) ,  qab = O(k2) ,  rob =0(k  3) (36) 

then the second term of equations (13) may be written in the form 

X "  + X~ + X~' + O ( k  5) (37) 
4 4 4 

with an error O(kS) .  Here X'a, X~, and X "  are given by 

1 m a c  - -  1 bc 
Xra = - ~ P  . . . .  1 -t-(~Pbc, a -pab,c) T = O(  k 2) (38) 
4 

p t  1 1 ac 
X a  - (~Pm.Pm. - ~ q . . ) , c T  
4 

1 1 bc 
+(PanPbn,c--~PanPbc,. +Sqbc,a - -  qab,c)T --= O(k 3) (39) 

X~ ' =  l-~r . . . .  T a t 1  + ~( Pamqdm ).cT a t 1  - ~PdlPlhPhd, c T a~ 

bc 1 Tbc + TbC --rabw T +~rbc.a Pomqb..,~ 

--l ( pahq bc, h -I- qah P bc, h ) Tbc -t- qah P bh,c Tb~ 

bc 1 T b c  --pa.,PmhPhb,~T +~PamPm.Pb~,. = O(k 4) (40) 

and are what we may call the components of first, second, and third order, 
respectively, for the 4-force X~ in the field (for their derivation see Appendix 

4 
A). Now, writing (37) in the form 

4X~ = A~.t~ v T ~v + B~4T~4+ C~T~4+ O ( k  5) (41) 

X4 = A4t3~ T t~v + B4~4 T~4+ C4 T44+ O(  k 5) (42) 
4 

and taking into account (14), we see that the expressions needed for A~.t~v, 
B~4,  C~,, A4~v, B4t~4, and C4 in (41) and (42) are 

A ~ t 3 v  = - - l [ ( P d d  + q d d )  1 - -  ~ P dh P dh ],-rt~ u.~ 

1 1 d- O ( k  3) ( 4 3 )  +( 6 ~  - p .~) ( spr  - P :~,v) + sq~. , .  - q~.,v 

B~.o4 = --�89 + qua -- �89 ),46/~/3 
+( 6.,~ -Pu,~)Pt~4,,~ - ( 8.,~ -Po,~)(Pt~,~.4 + P,~4.0) 

+ P . 4 P 4 4 . 0  nt- q 4 r  -- q/3.,4 -- q4. ,O nt- O ( k 7 / 2 )  (44) 
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C~ = (6~,~ -p~,~ + p..p.,~ -q . ,~  )(�89 -- P4,~,4) 

1 1 1 -t- l r44,~ d- O ( k  4) q-~P~4P44,4 -I- ~q44,tx - qfz4,4 - ~ P ~ q 4 4 , ~  

-P44)(SPr -p4,~(~p ~v,, - pt3,~,v) + (1 A4ev = 1 

h - � 8 9  q/34,~, q- O ( k  3) 

B4,,  4 ~ 1 1 1 1 --~P dd.~ -- ~q dd.r -- 5r dd, t~ + z( Pn~P.~ ),t~ 

+l(pe4P~4),~+�88 1 1 3 - ~( Pe,vPn~P~e),t~ - ~( P44),/3 

+�89 Pn~qn~ ),r + �89 

+ ( --P4~ + P4~P~  + P44P44 --  q4a ) (P  fl4,a - Pr - Pac,,r 

- ( 1  --P44"-}-p4ePe4 + P 4 ~ 4 -  q44)P44,/3 --  (1 --P44)q44,/3 --  r44,/3 + O ( k  7/2) 

(45) 

(46) 

(47) 

(54) 

Then 

Ar  = ( - 4  V + 4K,~,~ - V 2_ 2 N),~,St3~" + ( V .  - K ,~,~,. ) 8t~:, 

+�89 + Et3v).. - (4Kt3 . + Et~.),~ + O(k  3) 

C4 = -1[  ( Pdd + qdd + rdd ) + Pdh ( --�89 Pdh + ~ PhtPtd -- qdh )],4 
1 

-t-- (P4,~ -t- P4~P~o, d- Pe4P4o, -- q4o, ) (~P44,,~ --  P 44,4) 

_ 1 ( 1  - -P44  1 2 - -  q44)P44,4 --  ~Pa4P44,4 

1 1 1 r 4 --~P4o, q44,o, -~(1  - -P44)Q44,4- -2  44,4 -I- O ( k  ) (48) 

On the other  hand,  taking into account  (21)-(25),  from (18)-(20) and 
(32)-(34) we have 

p.,. = 2( V -  K,~,~)6~ + 4 K ~  (49) 

%,. = 2 V2~j.,, + E~.~ (50) 

p . 4 = 4 i W .  (51) 

%4 = 4iF~ (52) 

2 --1 r44 = - 8  W~ - 47r R(  W~,~ W~,r - 4iTr - lR(V~W~,4)  - 8 R ( T 4 4 K ~ )  

- 8 R (  V T  '~~ +4VK, . , .  - ~'-IR ( V.4)2 + 2~--~R (V.o.,.Kr - 4 V  3 

+ (2 ~ ) -1R  (V,o-~Eo.,,) - 27r-1R (VV,44) 

-27r -~R(  V K  . . . . .  ) - (27r)- lR(  VE . . . . .  ) 

+~r- lR(VV2,~)  + 8R(  T 44 V 2) (53) 
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B~O 4 = - 4  g4~t~,s + 4K,~,~,46.t3 - ( V 2),46,o43 - 2 N,46./~ -'[- 4i(  Wt3,. - W.,t3 ) 

- 8 i V (  Wt3,. - W~.,t3) - 4 K  ~13,4 - E .~ ,4  

+4 i (F t3 . .  - F ~,tz ) - 8 i W .  VI3 + O( k 7/z) (55) 

C .  = - V .  + 4 V V .  -4 iWu.4-K,~,~ , .+4VK, . ,~ , .  

+4K~.,~ V,,,~ + 8 i V W ~ , 4 -  12 V2 V,. 

+ E.,~ V,~ - 4iWu V , 4 - 4 i F . , a - 4 (  W.,~),.2 

+ { R [ - 2 7 r  -~ W~,~ W~,~-  2i7r -~ V,~W,~,4-4 T44K,~,~ 

- 4 v r ' ~ ~  -) '(V,4)2-l-qr-'g,o_~.Ko_,. 

+ ( 4 ~ r ) - '  V.o-,.E,~v - ~r ~ V V 4 4 -  ~ -~  VK . . . . .  

- ( 4 7 r ) - 1 V E  . . . . .  + ( 2 7 " r ) 1 v g 2 o . + 4 T 4 4 V 2 ] } . ~ + O ( k 4 )  (56) 

a4t~, = V,46t3~. -4iWt3.~, + 4 VV.46t~, + 8 i (  Wt3 V,~ - VWt~,~.) 

-4iV,~ W~6t~ ~, + 2 K  t~z,,4 + 1E ~,,4 - K ,~o-,46t3 ~, 

-4iFt3,~, + O( k 3) (57) 

B4t34= [ -  V2 + 4K~,~- 2 N  + VE,~ + 8 W ~ - 4  VK~,~ + 8 V3],t3 

+ 1 6  W,~ ( W e , , ~ -  W,~.,) 

+8iV.Wt3 - "rr -1{R[2( Wo-,,~)2 + g,o-(K . . . .  + 2Ko-,..v 

�9 3 l - 6 t W ~ , 4 - z E  . . . .  +~ W . . . .  ) +73 V( 4K,~  - 2 V 2 -  �89 

- 6  W,:., .+ ~ , W,.,,~ -~ (V,4)  - 167rT44(K,~,~ - V ~) 

1 , o ' )  + V ~ ( 2 K , ~ + ~ E , ~ ) -  V(4V ,44+4K . . . . .  + E  . . . . .  + 3 ( V  2 

+16r  + O ( k  7/2) (58) 

c , =  - V, + 3I,;~...,-2 vV,-2N.~ +4iV~Wo +2 V~V4- 32 w.~ w~.4 

+4iV~F~ + 4i W~K . . . .  + ( VE o-or,4) ~- 2( VK=~).4 - 8 iVV~. W~ 

+ i [ - 1 2 (  W~) , ,  + 6( VK~) , ,  - 6 (  V~),t + ~ r - ' { R [ 2 ( W ~ , . )  2 -  4 W~,~ W~,~ 

- 12~-T44(K,~ - V 2) + V ~ ( - 4 i W ~ , 4 +  K ~ , ~ +  2 K  . . . .  
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3 3 3 -aE  .... +aE .... )+ V ( - 1 2 z r T ~ - 3 V 4 4 - 3 K  . . . . .  - a E  . . . . .  

_7(V~)2) + V,~Kr + �88 V,,~E,~ 

+El V[4Kr162 - 2 V 2 -�89162162 + O(k 4) (59) 

Substituting now (54)-(59) in (41) and (42) and carrying the resultant 
expressions to (13), having separated this into 3+1 equations, we have 
concluded the first step in obtaining the equations of motion in fourth 
approximation. As can be seen in (54)-(59), every component of the 4-force 
is given in terms of retarded potentials, Now, assuming Synge's stationary 
initial conditions on the energy tensor T ab (Synge, 1970), these retarded 
potentials can be expanded in terms of instantaneous potentials, since the 
retarded ones are given by the action of the integral operator R on density 
functions of the form f(x,  t) as in (7) and (26). Then we may expand all 
these functions in the form 

f(x',  t') = f(x',  t) - [  x - x' I O,f(x ' ,  t) + ix  - x' 12_ Dt2f(x,, t) 
2! 

Ix-x'13 O3 f ( x  ', t)+" " " (60) 
3! 

so that 

where 

(61) 

f 
I , f =  J f(x',  t ) [x-x ' [  "+1 d3x' (62) 

By Synge's conditions the integrand in 1,D~f  has compact support for 
every density function in (54)-(59), and consequently (62) is finite for all 
n. Let us now expand the potentials (21)-(25) as well as the retarded integrals 
appearing in (56), (58), and (59). 

Taking into account the orders of magnitude for each density function 
and that D, =--, t=--O/Ot raises a quantity O(k") to 0(k"+1/2), then we shall 
only keep in every expansion the significant terms in order to obtain the 
equations of motion in the desired approximation. The calculations for each 
integral are performed in Appendix B. 

According to (B13), for the potential V we have 
V V-I1  44" 1/"1121- T 4 4 - -  T -~ T  V) = (T V. ,+Z) -~ . - . , . 2 -  �89 o'o- 1 4 4 "  

+�89 [ (x .  -x'~) Y .  d3x'-~D,13(T'49,), ,  

4 4  ~ l n . . r 4 4  1 n3r~-r, . .  - T  V . ) ~ + O ( k  4) (63) 
- - ~ l J  t a t 4 ~  - -  T ~ 0 1 . J  / J 5 k  at , u  / , , 
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where 17"=--I0 T44 is the instantaneous "Newtonian potential" associated 
to V, and 

Y,  = T~"V,~ - 4  T ~  -aiT4"(17V~, - ITV~.~ - 6j.v ~t) 

1 2 44 -2 ~ -4T44D, I2V~ O(k 3) (64) - T 4 4 D . ( - g D , I 2 T  - 2 V  + Kr162 = 

where D r ---. ~ O/Ox., and 

Z = - T r 1 6 2  iT"'D~(aKr162 - V2-  2IV) 

_ T44Dt[3/~, _2]Q_ ~ 2 . . ~  1 2 44  44  " ~DtT + I I ( T  g , ) ]  

4 4 "  " 1 4 4  2 = O ( k  7/2) (65) -31-2T V,o. W c r - ~ T  D t I l ( T C r ~  r) 

with 

lTVu = -Io(iT4"),  K,v = Io T"v, ]Q = -I0( T44~ ") (66) 

In order to obtain the equations of motion, we will need the derivatives 
with respect to the spatial coordinates and also with respect to time. Then 

= r v , , ) . ,  V,. V . - - ~ D . D 2 t h T  44- DuD~I4T 44- D~OtI3( 44" 

+ D, Y. djx-5~D,.D~L(T~+Tg4~).~+O(k4) (67) 

V, = 9, + Odl(-T44 f , - Z ) - ~  D3hT 44-1 D2,I,(T ~ _1 T4~f ) 
' ' z .~ 2 

f ~ 1 /_,15 I T 4  4 1 D2 ' ( x ~ - x ' ) Y ~ d 3 x ' -  D J 3 ( T 4 4 ~ , ) , , - ~ , ~ 4 ~  +? 

- L  D;  I~( T ~ ~ + T44 f'~ ) ~ + O( k 9/2) (68) 
5! " ' ' 

As is demonstrated in (B17), the expansions for the potential and its 
derivatives are 

W~ I~r u -  1 2 . ~4 1 3 �9 ~4 = II (Y , . ) -~D,I2(zT  )+gD,I3(tT )+O(k 7/2) (69) 

" 1 2 . p.4 1 3 W..~ = W~.,v-sD~D,I2(,T )+~D~D, I3(iT~4)+ O(k 7/2) (70) 

Wtx, t = V v r l x t _ _ O t l l ( Y i x )  1 3  �9 /z4  1 4 �9 ~ 4  , - s D ,  I2(tT )+gDtI3(tT ) + O ( k  4) (71) 
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For the potential (23) we have 

~ / x v _ l  1 / - .12  T TtXV 1 _ / " ) 3 1  T ~ q - O ( k  4) K ~ = K ~ - D t I ~ T  -~ , - ' , -2 -  - -  6 a J t 1 3  "~ - -  

K . ~ r = / ~ . ~ , r  I 2 .~ 1 n D 3 r  T ~ . + O ( k  4) , +gDz, D t I 2 T  - gaJTaJ t Jt 3 -- 

K.,.., = gt . , . . t -D2I ,  T '*'a-ln3r- ~ * - "  t " 2  - -  , / ~ / . v  - -  g * - ~  t Jt 3 a l / - ' 1 4 1  yovl_O(k9/2 ) _  

and, in a similar way, for (24) we have 

Et3~, = - - -  [Et3~, - Dd,  ( V t3 V~ + 2 VV, t3v) ] + O( k 3) 

1 
E~,~ - D~/~r + O(k 3) 

"tT 

i 
Et3z,,4 = "~ [Et3:, , ,-  D~irl( ~'/3 ~" ~, + 2 ~'~',~v)] + O(k7/2) 

where 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

On the other hand, expanding (25) and calculating its derivatives gives 

/7. =~-# { F . -  D,II[3 V,~V,, + 2(17"~17V~,~. - ~.~Iiz~) 

+2(if ' .  [] 17"- 17"• ITV.)]}+ O(k 7/2) (79) 

1 - F.,~ = - ~  F. , .  + O( k 7/2) (80) 

i - 
V~,t =-- -~ l iF~ , t -O2t l l [ -3V~4+2i (g ,o -~Vo- , ,~ -  V,,,,o_~V~.) 

+2i( I~'. [] ~ ' -  ~" [] i~'~)]} + O(k 4) (81) 

where 

[;~ = - i l o [ - 3 ~ 4 + 2 i ( ~ o . I V ~ , ~  - V,~I'~z~) + 2i( I'V. []  ~ ' -  l ~  l,~z )] 

(82) 

We need also the expansions for the potential 

N = 47r J( T 44 V) (83) 
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and for its derivatives. These are 

'~' 4 4  ~ 1 2 N = N + D , I ~ ( T  V)-~DtI2(T44~")+~D~I3(T44V)+O(k4) (84) 

, - -  ~ 1 2 44 " 1 3 44 N ~ -  N , ~ , - ~ D ~ D t I 2 ( T  V ) + ~ D ~ D , I 3 ( T  V ) + O ( k  4) (85) 

~l,+D2tI1(T44~/)  1 3 4 4  " 1 4 4.4 * , = , - ~ D t I 2 ( T  V ) + g D , I 3 ( T  V)+O(k 9/2) (86) N ,  

where 

~ [  = _ i o {  T 4 4 [  ~ 1 2  4 4  4 4 "  V - ~ D , I 2 T  - I ,(  T V, t ) - �89 T " ~ - � 8 9  T4417)]} 

and 

(87) 

~ 1 2 4 4  V =  V - ~ D t I 2 T  (88) 

We will consider the retarded integral that appears at the end of  (56) 
as a potential, which we denote by M, i.e., 

= R [ - 2 ~  --1Wo-,,,Wu, o. - 2 i ~ "  1 V o - W o - , 4 - 4 T 4 4 K ~  

- 4 V T  '~ - (21r)-'( V4)2+ rr- '  V ~ K ~  

+(47r) -1V,,~,Eo-,, - - 1  V W , 4 4  _ $ T - 1  VK . . . . .  

- (4"t/') -1 VE . . . . .  + (277") -I V( V~)2+4T44V 2] (89) 

Its expansion in instantaneous potentials is 

" " 4 4  / ~  ~1-=-Io-2"rr-ll~7o-,,,Vv',~,o--2i'n'-lv, o-Wo-,4 - a T  ( o-o- - D,11 T,,~') 

- 4  - ( 2 = ) - ' (  9 , 4 ) 2 +  - D , I ,  T 

+(4~-)-1 ~ , ~ [ / ~ , ~ ( 1 )  + ( 1 ) D t I I (  ~,~ ~ + 2 V ~ ) ] - r r  -1VV,,44 

--1 ~ ~ --1 --1 ~ ~ } -or  VK . . . . .  + ( 4 ~ )  r VE . . . . .  +(2r 2 

- D t I l [ - 2 7 - i - - l  l~vo_,~ ~Vv, o_ - 2iTr-l  V, o_ ~Vo_ 4 - a  T4"I~o_ o_ 

- 4  T/T~* - (27r)-1( ~,)2 

+ 7r - 1V,,o-J~,~,, + ( 4 7r ) - ' V,=~/~o.,, - T r  1 ~ , 4 4  - -  77" -- ' I ~ r /~  . . . . .  

- (4 r r ) - '  rP/~ . . . . .  + (2rr) 'V( ~)2+4T4alT '2]  + O(k*) (90) 

and we also have 
S~/.,~ = ~.~ + O(k 4) (91) 
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where M is the first term of the two into which M is divided. On the other 
hand, from (58) we can define the retarded potential 

N = R ( b )  R { 2 ( W ~ . ) 2 + V , ~ [ K  . . . .  + 2 K  ... .  _ - 1 3  -= , 6zW=,4- ~(~E .... - E .... )] 

+ [ ] V ( 4 K , ~ , _ 2 V 2 _ � 8 9  _ ~(, V,4)2 

-16~-Ta4(K,~ - V2)+ V ~ ( Z K ~  +�89 

- V [ 4 V 4 4 + 4 K ~ , v , ~ + E  . . . . .  + 3(V.~)2 + 160rT'~]} (92) 

Then, expanding the density b, retaining terms up to O(k4), and finally 
expanding the retarded integral operator R, we obtain 

= ~ = 1o{2( ~v~r~,~,)2 q - V,o-[/~ .... + 2 / ~ , ~ -  6ilV,~,4 

+1 -1.3.~ /~,~)]+Fl17-[4/~ _ 2 ( . ~ ) 2 + ( 2 ~ ) 1 / ~ ]  ~qr ~ ~l:z vv,~ -- , 

_6 1~. ~.,, _ �89 ~,,4)2_ 167rT44(/~ _ ~2) 

+ f ' ~ [ 2 / ( ~  - (2 ~-)-1/~1 

- f'[4 f'44 + 4/~ . . . . .  - 0r-1/~,=~ + 3(f'~)2 + 16~'T~]} + O ( k  7/2) 

(93) 

Following an analogous process for the retarded integral that appears 
in (59), we have 

= Io{ 2(I~'~,.) 2 - 4 IVy,. 1~'..~ - 12 ~-T 44(/~,~,~ - O t I  1T'~'~ - f-) 

+ ~r,,~ [ - 4  i ~7,~,4 + /~  .... +21~ .... + 4 ~  (/~ .... - /~  .... )1 

"~- ~r [ -- ] 2 ~/TT ~176 -- 3 ~r,44 -- 3/~ . . . . .  -[-4~ ~ . . . . .  -- ~ ( ~z, ar)2] 

+ V,,.,[Is - O J 1 T  ~ - (47r) -1V,r 

+(4~r)-~DtL ( f ' r  V,~ + 2 f'Vr 

+r7 1)[4/(r162 - 4 D ,  L T ' "  - 2 f'2 + (20r) -1/~  

- P ,  I I {  2( ~r _ 4 I7r ~ , ~  - 12 ~rr 44(/(~ - 

+ V.,. [ - 4  I7#~., + / (  .... + 2 / (  . . . .  + 4-~ (/~ .... - /~  .... )]  



Equations of Motion in Fourth Approximation 663 

~ 3 7 ( ~ ) 2 ]  
+ f ' [  - 12~ rT~  + 3 f ' . , , -3K . . . . .  + ~--~/~ . . . . .  - ~  

J 

(94) 

and we also have 

D, Cg = D , ~ -  D211(F)+ O(k  9/2) (95) 

where ~ is the first term of the two into which ~ is divided, and F is the 
integrand between keys in the other. Now using the expressions obtained 
in (63)-(95), we have for the coefficients of the components for the 4-force 
the following expressions: 

(a) From (54) 

A~.~ = [ - 4  I~ + 4 / (~  - ~2 _ 22Q],~613~ + ( ~ _ l D ~ D 2 1 2 T 4 4  - i~cro_~)8~.;, 

+ 91( 4/~r - 1/~t~r )... - (  4/~r - 1 / ~ t ~ " / .  7r / , .  + O ( k  3 ) (96) 

(b) From (55) 

B ~ 4 = i { 4 [ f Z , - D ,  I 1 ( ,  T 4 4 " V t  ) - -  21"" t " 2  - -  1 r 1 3 / -  T 4 4  - -  3-t~ t Jt 1 k 1 F I 2 r t T C r ~  

-4( / ( r  D2I~ T r + ( 17"2),t + 2[ ~r,, + D2I~ (T 44 V)]}3.r 

+4i(1-217")( ti,'~,. - IV~,,o ) + 2( OuO212 T 4~ - Dr T 4" ) 

2 3 4,0 -~( D~D t 13 T - D~D313 T 4~ 71- 4 i  ( K ~13, t - 0 2 1 1 T  t~13 ) 

i [ # ~ , , _  2 . . . .  i - 
D,I , (  V.V.t3 + 2 VV.~)] + - -  (Ft~,. -/3'.,13) 

77" "Jr 

-8ilTV. V t3 + O( k 7/2) (97) 

(c) From (56) 

- 1 2 44 1 + l D . D t I 3 ( T 4 4 9 t ) ,  t C ~ = - V . + ~ D . D t I 2 T - - ~ D , I I Y ~  3! 

+--D.DIhT4~+ D,~D~,t~(T~+ T44f/ 
4! . " . . . . .  

" - - 2 44 4 V,,uOtll(r 1 T 4 4 ~  ) +4VV,~-2V,~,D,I2T - ~  " o-o- 

--4 V#/, ( T 44~Vt)- 2~"Dt~D212T44-4~V~,t 
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2 
+4D,I1 Y .  + 2D312(iT 4~) - ~  D413(iT 41.) 

- 1 2 ~ + I D ~ D ~ I 3 T ~  - K , ~ , ~ - ~  D~D, I2T  6 

+417/(~,.  + 4 I ( , . ~ = - 4 V ~ D , I , T  ~*~ + 817"I7r - 1217"2 l~,, - ~r-'/~.~ 17 

+~'-IIT'~D'II(17""P~+ZVIT"~'~)-4I~d~v'-l/3' ' ' ' ~r ""+-~D'II[3V'*V'I 2 ", ". 

+ 2( 17",~l~v'~,~ - 1 ~  I,~r~) + 2(IV~ [5117"- 17" [7 lYCu)] 

-4( " 2 W~),~ +[Z ar t. + O(k 4) (98) 

(d) From (57) 

[ 1 n 3 ,  r , 4  A413~, = - i  ' - 2  *-'t*2 - - DtIl( T44 ~/ t) 

-4i17"~,8~. + 8i( 1,I/~ ~ . -  17" I~r ) - 4 i ~  l'V~6ts , 
-2 i (K~v , t  - D~ I1T Isv) 

i ~ 2 
+~--~ [E~ . , , -  D , I , (  V, t3 V,v + 2 VV~,) ] - i (_K~, , -  D2I, T ~ ) a ~  

- - -  Fis,~, + O( k 7/2) (99) 
3T 

(e) From (58) 

2 o-o" 2 3 o-o- +4I(,.r + 2Dt3D,I2 T - ~  D~D~I3 T - 2 N  t~ 

+ Dt~D~ I2( T44 V) --~ Dt3D~ I3( T44~ ) 

1 ( VE,,~o-),~ +1  I/t3D,I,( (/~d~ + 2 I /V~) 
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+8(  I'7V~),r - 4 (  1~'/(~),~ + 4 V,t~Dr T'~" + S( ~3),r 

+16 I~'~( ITVt3,~ - l,rV,~,t3 ) + 8 V,,SV, - "W-I ~,f3 -~- O(k 4) ( 1 0 0 )  

(f) From (59) 

{ 1 3 44 ~ t ) _ ~ D 2 I i (  ---2 T44~) C4=i V t - -~DtI2T  -Dt I~(T  44 TO. o. 1 

- x~) Y~] 1 +i 
- D'I3(T44V't)"--~.T. D~I4Ta4-Df l l z  3 D2t Il[ ( Xo. 

44- } . - - D , I I T  ]--~iD~I2T ~176 ~iD~Is(T , + T  V,~).o- 3i[Ko.,.,, 2 o-,~ 3 

i + -  D4,I3 T ~176 + 2 iVV , - if.'D312 T 44 
2 

-2i~rDtll(T44~r.t)-2.2.2.2-~ ~.rO2,l(T~176 ) 
_iD~(I=T44)~,, 2 i D i  { T ~  1 -7  " \  -ir44~) ~'' 

[ 2 44 1 +10413(r44fz) ] +2i ~,+Ddl(r  ~)-~D,~h(Tn4p) 6 

+4i~ Iiz~ - 2i~D=, h( ir ~) -4iV,,Jl  ( Y~) 

+32i ~D313(ir4~ ) _ 2iffV~D~D2h r44_20if~20 + 8iliz~V~, 

+- V~(P~-DJ,[3 ~r V.~w.) 
7/" 

+2( Iiz~ E] P -  V E] IVy)I} + 4 i ~ / (  . . . .  

+ i -  ~ i ~-  v ,e~- -  f,m,i,(f~f~+zvv~)+ -~ P&~, 
77" 7/" fl" 

_ i  ~ D ~ i i ( ~ + 2 f ~ , ~ ) + 4 i ~ t i ~  
7r  

-4i~,D,l~ T ~  + 4if/K~,~-gif/D=,e~ T ~ -  8 i f / ~ W ~  

+ iTr 1[D,~-D2,I~(d)]+ O(k ~/2) (101) 

At this stage we have at our disposal in (96)-(101) the expressions for 
the components of the 4-force in terms of instantaneous potentials. Taking 
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into account (37), (41), and (42), it is possible now to determine the diverse 
relativistic contributions of each order up to O(k 5) both for the classical 
force in the equations of  motion as well as the equation of continuity. But, 
in order to be able to do this, we must do the final step, i.e., we now have 
to choose an Eulerian formalism for the description of the motion of the 
material system or, what is the same, we must choose an Eulerian decomposi- 
tion of the material energy tensor T ab . In this way, it also will be possible 
to verify papers and, in particular, the equations obtained in Synge's paper. 

The Eulerian formalism that we adopt is 

T € =pu~u,~-S~v (102) 

T ~4= ipu~ (103) 

T 44 = - p  (104) 

These equations express the ten components T ab of the material energy 
tensor in terms of the Eulerian variables p (density), S . .  (stress), and m~, 
(velocity). Equivalently, we may write (102)-(104) in the form 

fl = - T  44 (105) 

U~, = iTS4~  T 44 (106) 

S, ,  = T~'aT u4/T44_ T~.~ (107) 

and regard this as a definition of the Eulerian variables in terms of Tab. 
With these variables we have for the first term of equations (13) 

T ~b,b = pft~ + U~ (tJ + pO) -- S. . , .  (108) 

-- iT4b,  b : t9 "q-riO (109) 

where 0 = Ub, b = /~//~, ,u.  is the expansion and the dot means total derivative 
with respect to time. Then, taking into account (37), (41), (42), and (96)- 
(104), the equations of motion (13) take the final form 

pfi~.+u~.( jS+pO)-S~. . .=pV.+ Y,~+ Y ; +  Y '~+O(k  5) (110) 

[J+ pO= -pV,,  + ZI + Z:+ Z3+ Z4+ O(k ''/2) (111) 

where 

Y~ = (pu 2 - S~) V,~ -4(pu~uv - S~y) ~ + 4pu~( I~V~.~ - I~V~.~ - 6~ V', ) 

+pD~.(�89 fs (112) 
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(~ ) I (  1 ) 
,I x ~ ,1~ 

+pu~ { 8[( I,t'~,. - I~Z..~ ) l~ + I,V. l~,~ ] - 2D~[D.h (pu ,  ) - D j2 (pu~) ]  

1-) 
'71" , t  

+6~(-2D212p + 4 K ~  - 17"2 - 2b~r),,} 

-4p'~(k~.  + 2 ~, , )  + 4p ~ ~, (113) 
- - 2 [ 2 Y'~ = - 4 p V  ~Ii(pV, t) +-~ pu, D t .  D.D, I3(pu~) - D,D?I3(pu~) 

"B" 

+1 f 1 ~ 1 2 2 
p D t ~  D .D ,h ( pV t )  - ~  D.D,I3(pu - S ~ )  

3 

- 11 I, Y~ - 2D313 (pu~) - 140D~D~D~Is[(pu~u~ - S~),~ - p ~ ]  

3 ~ ~ 1 ---~ Dfll[3 V,,~ V., + 2( V,o.I~ro.,,~ - ~,~o.I,I/o.) + 2( r ~  [] I7'- l~" F--I I,V,~)] 
J 

[ 
+4pfm, f, kp.~u~- s.~-~ 

I 6.o- pu - S ~ . + - ~ p V  (114) +~ 
z ,  : _ (  p . 2  _ s ~  ) ~ ,  - 4 r ~ ( pu~.~  - s ~  ) + p . . u ~  (4R~ - T?~_ 2~r 

+pD,(3/(,~,~ 2 N - " a  , 2 - ~ - V -~Dt I ,  p) -4pVoW~ (115) 
22 = - p O J l ( p ~ , )  +' 2 ~ p V t  I i  ( p ~  - -  S ~  a Ai - l p  ~r) 

--3pUpil (pu 2 - -  S~c ) q- 2pD~,[, (p I7') (116) 
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Z3 = - -~ ( pu - Sr ) D2, h p  - 4( pu 2 - 

+2(pu~u:, - S~,) [ 4( I7r V,, - 17" 1,7r - D,D2,I2(pu~) 

- 1 - 1 - 
-K~ , , ,+ -~- -~  E t 3 , , , + ~  Ft3,,] 

+put3[16( W,.~ - I7r ) ~7(.. + 8 V.. rr162 ] 

[ -  ~"D~I2p + 2 a r = +pu~D~ D,  I2(pu - S,,,~) - *opD, I2p 

_D212(p~  ) _ 1  ~/~o.o. + 8 ~V.2_ 4 ~/~o_o. + 8 ~3 - 7r-'/~] 
"77" 

1 - 1 4 3 2 - z 
+pD, --~ PtI3(pVa) ---~ DtI4P +~ D,I2(p  u - S,,,~) 

-IopD212p - P~I2(p~') - ~'- '  ~ ]  

- 2 p  [ ~',,~D2,I2(pu,~) + ITV,~D,~D212p + 4 ITvo-ITv.~.. 

1 - - 1 + - -  V o-F,~ + 2 Wfl~,,~ ,:, - 4 V ~',~ Wo- (117) 
J 2rr ' ' ' 

. 1 2  [ 1 ] Z4 = - ( p u  2 -  S~)D, I , (pV . t )  +-~ (pu - S,,~)D2,I, 4(pu 2 -  S~)  +~  pF" 

+(pur3u:,- Sr DrD313(pur 
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-2pu~Dt3[~ D~I3(pu2- S~)+ loPll(pVa) 

1D~I3(p~") lIoDff,(pu2-So-~+l-pv)] 

+2put~V,~{I~[-oV, t+ID,(ou2-S,., .+~PV)] 

, } + - -  D,II( V,.V,,. + 2 (zYr ) + 2Dd, ( p U  2 - -  Scrcr) 2rr 

~ ~ 1 2 -2pVPt[I,(pV,,)- 5 P, Ii(pu -S~,o-+~pf) 

D,I,( V,.~V,. + 2 ~'V,.,.) - 2D,I,(pu 2 - S. . ) ]  
2 7 I "  " " " I 

- 1 2 1 - 1 + 2 V I T ~ . ) }  +2pVdD,{~ Ii[7(pu -So-,.)+~ pV] +-~ I,( V,o-V,~ 
J 

f 1 3 2 So.,~)_~D,ll[(x,_x,)yo. ] +pDtli, Z_~Dte,(p u 1 

+ 1201 D3isD,.[(pu,.u~),_S,.~_(p~,)], , 

1 

1 . 1  

+ Dill pD, I2p + -~ 

+p V,,~ { 412 Y~ +~ D:I3(pu~)+ 1~ DtIl[3 V~V, 

+2( V,,, I7r - - l~ ,,o- I/V~) + 2( I'~/o- [ ]  V - V [ ]  I,V,:,.)] } (118) 

As can be seen in (110)-(118), the decomposition used has the advan- 
tage that the equations of motion take an analogous form to the Newtonian 
ones. In fact, in the first three equations (110) may be seen the Newtonian 
equations of motion modified by the relativistic corrections Y~,, Y',  and 

t t  Y~,, and in the fourth we see the equation of continuity with the terms Z1, 
Z2, Z3, and Z4, indicating change of mass. The first corrections go to O(k s) 
and the second to 0(k11/2). The Y~ is of order O(k3), Y" is O(k4), Y~ is 
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0(k9/2), Z1 is 0(k7/2), Z 2 is O(k4), Z3 is 0(k9/2), and Z4 is O(kS). The Y" 
is the radiating term of the equation considered by Chandrasekhar and 
Esposito (1970) and by McCrea (1981) in connection with the quadrupole 
formula. 

As Synge pointed out, there are advantages in this form of the equations 
of motion, such as the possibility of introducing additional bases of approxi- 
mation in the physical situations in which S,~ and u~ are small. The concept 
of rigid motion and the junction conditions appear in a very natural form 
with these variables. If the motion is rigid, then u~ must be a Killing vector 
satisfying 

u,,v+uv,~ =0 (119) 

and the appropriate boundary conditions on the three-dimensional surface 
in which matter is confined is expressed by Tabnb =0, where nb is the 
covariant normal to that surface. Then, when a post-Newtonian formalism 
is used, it is easy to carry the results expressed with our variables to this 
formalism and see how, for instance, the approximate rigid conditions used 
in it may be derived in a natural way from (119). The fact that the only 
approximations introduced are in the right-hand side of equations (110) 
and (111) is, in short, the main advantage of the Eulerian formalism used. 
On one hand, as may be seen in (110) and (113) when the O(k 4) and 
O(k 9/2) terms Y~ and Y~ are suppressed in (110) we have Synge's first 
three equations of motion in third approximation [cf. equations (1.61) and 
(1.62) of Synge (1970)]; on the other hand, in (111) and (115) and the first 
two terms of (116) we see Synge's fourth equation o f motion [ cf. (1.61) and 
(1.63) of Synge (1970)]. This is so because, although the term Z of Synge's 
fourth equation in 0(k7/2), two terms in it are O(k 4) and naturally they 
appear in our approximation in the term Z2, which is O(k4). So, with 
respect to Synge's third-order equations of motion, there are in (110) two 
more terms Y~ and Y~ that are O(k 4) and 0(k9/2), respectively, and in 
(111) there appears in Z2 all terms O(k4), and in Z3 and Z4 the O(k 9/2) 
and O(k 5) corrections, respectively. Now, with the equations of motion in 
fourth approximation we are in a position to apply them to a great variety 
of problems, such as the study of orbits in concrete models, the two-body 
problem, and, in general, models corresponding to any situation of physical 
interest. 

As an example let us consider the case of a perfect fluid with spherical 
symmetry and static. In order to apply these equations, first we must 
determine the value of the potentials appearing in them in terms of the 
functions that characterize the generating system of the field. Taking into 
account that this is static, the components of the metric tensor (49)-(52) 
are given by 

g~, =[ I + 2( V + V2-  K~,~)]6~ +4K,~r + E~r + O(k 3) (120) 
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g,~4 = 0 (121) 

g44 = 1 - 2 V + 2 V 2 - 2 K ~ + 4 K ~ V - 4 V 3 + s g + O ( k  4) (122) 

because W~ and F~ are null in this case. The potentials (21), (23), and (24) 
are given by 

V = - f  T44(x ' ) [x-x ' l  - '  d3x' (123) 

g ~ ,  = f T~'(x')lx-x'1-1 d3x' (124) 

if E ~  - - (V,.V,~ + 2 V V . t 3 ) I x - x ' [  -1 d3x' (125) 

and for (89) we have 

I f  + ,  
, ~  = 44  o-o- - - -  [ - 8~ 'T  K~-8~rV ' / "  + 2 V , ~ K ~  ~ V ~ E ~  

~ " 

- 2 V K  . . . . .  - �89  . . . . .  + VW~+8T~V2]lx-x ' [  -1 d3x' (126) 

Clearly, whereas the density functions in (123) and (124) are of compact 
support (and so their respective integrals are extended over the domain c 
occupied by the material system), the density functions in (125) and (126) 
are nonnull all over the space (in fact, when the distance r increases, t~a,~y 
decrease like r -a) and so their corresponding integrals are also extended 
all over the space. 

Since in the system we are working with, G = c = 1, we have for V the 
value 

V = M / r  (127) 

where r = I xl and M is the mass of the material system given by 

M = f~ T 44 d3x' (128) 

In order to determine K ~ ,  let us denote by p(x') the distribution of 
pressure inside the material system. We then have 

T ~t~ = p(x,)6~t 3 (129) 

and 

K~t3 =6~t3 f p(x ' )d3x '  (130) 
r 3~ 

Now, for the calculus of p(x') in the order of  approximation we are 
considering we have to solve the equilibrium equation 
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p ,~=pV,~+ T C ' ~ ' V ~ - 4 T ~ V f 3 - 4 p V V ~ + p K  . . . .  + O ( k  4) (131) 

which in turn requires previous knowledge of Kr162 inside the material system 
and in the former approximation. Since the hydrostatic equilibrium equation 
in this approximation is given in polar coordinates by 

dp(r) d V  
dr - P-~r + O( k3) (132) 

then, using the value of V inside the material system, which is given by 

W :  27rT44(3R2 - -  r 2 )  (133) 

(where R denotes the system's radius) and the boundary condition p = 0 
at r = R, from (132) and (133) the following pressure distribution is obtained: 

p(r)  = 27r( T 44)2(R 2 - r e) (134) 

So, for the former approximation 

Kr162 4zr (T44) 2 I ~ = - - -  dr' (r '3 - Rr')[r2+ r '1 - 2rr' cos 011/21ff+ O(k 3) (135) 
r d o  

Now, if we take into account that 

[r2+r,Z_2rr,  cosO]~/2=~2r'  if r > r '  
{2r if r < r '  (136) 

then from (135) we have 

2 44-2 F 1 Ko.o-=-4. 'n'(T ) L - -~ r4 q- ; Rre + ( R-~--~ - Ra ) 3 + O ( k 3 ) (137) 

Carrying then (137) to (131), we finally have the following differential 
equation: 

~r + arp( r) = br + cr 3 + O( k 4) (138) 

where 

a = -47rT44rp(r)= O(k 3) (139) 

b = -47r (T44 )2+~2(T44)3R2-87r2R(T44)3=  O(k 2) (140) 

88 2 / , ' r ,  44", 3 O(k 3 ) (141) c=--Ts~r t x  ) = 

The solution of  (138) [with, as before, p(r) = 0  for r = R]  is 

,,(r) = .2] e,<p[(.2_,.e)2 ] La a a + la a 2 a r2] q- O(k4) (142) 
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Then, substituting (142) in (130) after a McLaurin series expansion of the 
exponential function in (142), we finally have the value of K ~  in the desired 
approximation: 

K~ _ 6 , ~ [  ~ M2 + 3rr / 2 _ 1 0 ' ~ M 3 ]  + 
- - 7 -  ~ 5R 2 \5R 7 ] j O(k 4) (143) 

Now, in accord with what has been previously said, the value of E.~ 
must also be obtained. E.t3 must be a solution of the differential equation 

AE~t~ = 4 M 2 ( ~ -  2 - ~ )  (144) 

which, due to the symmetry of the model we are considering, must be of 
the form 

E~t~ = - ~ f l ( r )  + (x~xt3 -16~t3r2)f2(r) (145) 

Then, taking the Laplacian of (145), from (144) and (145) we obtain the 
equations 

d2fl(r)  2 df~(r) 4 (V,) 2 (146) 
dr 2 r dr 3 

d2f2(r) 6 df2(r) 28 
, . 2  ~ - ( V ' )  ~ (147) 
. r  r dr r 

Using then the boundary conditions 

!ina f ( r ) = 0  (i = 1, 2) (148) 

we obtain the following as the solution of these differential equations 

2 M  2 8 4  
. . . . . . .  (149) fl(r) 3 r 2 t-3 r 

21 M 2 28 M 2 

f2 = 5 r 4 ~ T  7 Z (150) 

where g and L are constants given by 

g = - 3 M 2 / 5 R  (151) 

L=6R (152) 

Carrying then (149) and (150) to (145), we finally have for E~;3 the value 

( 31 M2 8 g 28M2 ) (51 M2 28 M2 ) 
E.~ = ~ r 2 3 r 15 r 3 L 8~t 3 -  ' r 4 5 r5 L x~xe (153) 
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Finally, in order to obtain the whole expression for the gravitational 
field we are considering, we need the value of ~.  In the previous calculations 
we have only used symmetries and the weakness of the field. But now we 
know that i f f (x )  is a function that decreases like r -4 when r ~  co, then 

f f(x')]x-x'l-l d3x'=l f(x')d3x'+O(r-21~ (154) 

the integral being extended all over the space. So, maintaining the principal 
part for large values of r, from (126) we have 

S~=1{8 f (-r44K~176 WT~ d3x'+ f (TT-lw~c~'q-8T44V2) 

+(2'rr)-a f (~.o-,,V,o-,~-V.Y--, ..... )d3x'}+O(k3r-21ogr) (155) 

where 

~ = 4K~t ~ + E,~ (156) 

The first integral in (155) is equivalent to 

8 f f d3x'd3x"[r44(x')r~(x")-r'~(x')r44(x")]]x-x'1-1 (157) 

which, due to the spherical symmetry, is null because it is extended over 
all the space. 

Using the integration by parts, we obtain from the second integral 

10 J T44(x ') V2(x ') d3x' (158) 

that is, 
54 M 3 
9 R 2 (159) 

and finally applying again the integration by parts and the condition that 
E~,~ and its first derivatives are null at infinity, we see that the last integral 
in (155) is also null over all the space. So, far from the generating system 
of the field, ~r is given by 

= 59 M 3 
--~- R--- T +O(r-21og r) (160) 

The potentials (127), (143), (!53), and (160) determined the metric 
tensor (120)-(123) of the space-time in the order desired. As may be seen, 
these potentials are given only in terms of the mass of the generating system 
of the field. The potential ~ is given by 

E,~t3 = 0~6,~t3 + ck2x,~x~ (161) 
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where 

47r M 2 31 M 2 8 ~ 28 M 2 
41 t 

5R r 15 r 2 3 r 15 r 3 - - + ~ x " 3 "  
L O C k )  (162) 

21 M 2 28 M 2 
~2 5 r 4 ~--5- 7 -  L +  O(k 3) (163) 

Now, carrying (127), (143), (153), and (160) to equations (110) and 
(111) we can obtain the equations of motion for a particle moving in this 
field. To do this we only need to add the hypothesis that the particle does 
not modify the potentials already obtained. Neglecting, then, the self- 
potentials of the particle and taking into account the static character of  the 
field, from (110) and (112)-(114) we obtain the simpler equations 

tip = V.o - 4  V.,u~up + V pu 2 - 2 (  V2)., + K,.,. p 

1 +4( 3 V ),p - Ko-o-,pu 2 - 4 K ,  p ~,u,u,, - - -  Ep,~V,~ 

1 +2K~,,pu~u~ _ . ~ ( 2 E  1 
, ,~a,v - -  7r  E , ~ , , p / u , ~ u  v 

- 4  VK,~o..p -4Kp,~ V,~ - M p + o c t  4) (164) 

with V, K~/3 , E,~, and M as in (127), (143), (153), and (160). 
These equations have obviously two first integrals, from which we can 

obtain the trajectory of any particle. In fact, since the field is static, we have 
the integral of  energy 

lu2 = E + V -  5 V 2''~ Ko-,~ - 6EV + 14 V 3 +9 V E  2 - 6 VK,~,~ + 1 8 E V  2 

- 2 E K r 1 8 9 1 8 9  (165) 

and, due to the spherical symmetry, we have the integral of angula r  
momentum 

r2~ = h i 1 - 4 V +  8 V2+ E 2 - ~bl] + O(k 7/e) (166) 

(their derivation can be found in Appendix C.) 
Combining then (165) and (166) in the usual way (see, e.g., Gambi, 

1985), we obtain for the trajectories the following equation: 

d~ e -2 3 2 +37"i" M2..[_ 9_.~(1.~_S~M3 
(~--~) =2h  ( E - ' ~ E ) + 2 h - 2 [ M + 2 E M  5R 2 R 2 \ 5 R  7,] 

2r E M 2 + 7 E 2 M  8 E ~ +  59 ] 
-5--d -5 - M3 

q-[-1- f f2h-2(3M23-~5 E m 2 - ~ m c ~ q . - ~ - ~ m 3 ) ] , 2  
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+[-~ ~+~R M2+2h-2(181; M3-~55M2EL)]~3 

+1- 32 2 112 h_2M3Ll~ 4 M 
3 

56 1 +-- LM2~5+ O ( k 3 r  -2 log r); r = -  (167) 
15 ~: 

In it we can see the classical term 

so-2- 2h-2(E + V) (168) 

and the terms corresponding to the fomer approximation 

- 2h-2(2K~ + 6 V2 + 6 EV-  3 E 2) (169) 

In order to see the behavior of these trajectories, let us calculate the 
advance of perihelion of any bounded one. If  we denote the apsidal points 
by ~1 and (2 (with 0 < E1 < ~2), we know that the apsidal angle is given by 

~ 2 
A 0  = [ - F ( ~ : ) ]  - 1 /2  d~: 

1 
(170) 

where F(~:) is given by the right-hand side of (i67). 
In order tO avoid the singularities in the integrand, we write F(r  in 

the form 

5 
F(~)=(2-2Mh-2(-2Eh-2+ ~ a~c~+O(k3r-210gr) (171) 

or=0 

where a~ is the coefficient of ~:", having removed the first three terms in 
(171). Clearly ao, al ,  and a2 are O(k), and a3, ct4, and a5 are O(k2). 
Writing now F(~:) in the form 

F(~:) = [~2 _ (El -~- ~2 )~  "~- ~1~2][  1 + G ( ~ ) ]  ( 1 7 2 )  

where 

(-2Mh-2 + r r162162 + 2Eh-2) + Es~= o a~r ~ 
G(s c) = (173) 

( ~ -  ( 1 ) ( ~ -  ~2) 

and taking into account that F(~I) = F(~2) = 0, we have 

~'5 a r  5 
_ 2Mh-2 + ~:1 + ~2 _ ~:l ~,~ =o ,~s2 ~2 ~,~=o a ,~ l  (174) 
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5 ~ 5 ot 

2 Eh -2 + fl & - 

from which we deduce 

i.e., 

where 

5 

G(sC) = E a~ 
o ' = 0  

Using now the binomial theorem, we have from (170) and (176) 

677 

(175) 

(176) 

f f2 1 [1 1 +3G2(~)]d~+O(k3) (177) a o =  , [ ( ~ _ ~ ) ( ~ _ 6 ) ] , / 2  -~G(~:) 8 

A0-- -S1+h-2(3M2+~5EM2-  ~ M~+~M3)S2 

+[-~+2-~RM2+h-2(184M3-5-~M2EL)]S35 \ - ~  

-(156 M2+ 56-~ h-2M3L)S4 

28 2 27 +-~ LM $5+-~ (h-2M2)2S6 + O(k3r -2 log r) 

f ~2 1 d~: 
S I =  , [ ( ~ ,  - -  ~7) (~ :  - -  ~ 2 ) ]  ' / 2  

sj = , (r - ~:)(r - ~:,)(~ - 6)[(~, - ~)(~:- 6)]  ,/2 

"~2 2 2 2 2 2 f [ ( ~ - ~ , ) ( ~ 2 - ~  ) + ( ~ - 6 ) ( r  - ~ , ) ]  a 

Taking into account that 

-2Mh-2 + ~, + ~2 = O(k) 

-2Eh -2-  ~,~2 = O(k) 

(178) 

179) 

( j = 2 , . . . , 5 )  

(180) 

(181) 

(182) 

(183) 
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a direct calculation of (179)-(181) gives 

S 1 = 8 2 = S 6 = 3"/" (184) 

$3 = 3~rMh -2 + O( k ) (185) 

$4 = 7r(9 M2 h-4 + 3 Eh -2) + O( k ) (186) 

rr(5M h - z M  h + ~ E M h  - i s M h  ) + O ( k )  (187) $ 5  ~ 3 - 6  5 2 - 4  15 - 2  17 - 2  

So, the advance of perihelion is 

0 = 67rM2h-2+ 8"rrEM2h-2+~ 7rg'Mh-2 + 32 "a'2 M3h -2 
5 R 

+(91-1-~L)zcM4h-4-~57rLEM3h-4  238 _ - ~  7rLM3h-2 

224 
+ 1rLMSh 6+ O(k3r-2 log r) 

15 

As can 
Schwarzschild advance, that correspond to the former order of approxi- 
mation. 
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(188) 

be seen, it includes all the relativistic corrections, such as the 

A P P E N D I X  A 

Equations (13) may be written in the form 

Tab.b = Xa (A1) 

where 

Xa = --(Fbc+~6abFeda l d _}_gt~acFbd) d bc + O ( k  s) (A2) 

F~c being the Christotiel symbol of the second kind with respect to the 
metric (35), i.e., 

a 1 ah 
F b c = ~ g  ( g b h , c + g c h , b - - g b c ,  h) 

where 

with 

gab "= t~ab + Pab + qab + tab + O ( k  4)  

P,b = O(k) ,  qab = O(k~), r,b = O(k 3) 

With the order of approximation considered we have 

ab g = t~ab - - P a b  -- qab -- tab -t-PatPtb + 2palqtb --PatPtmPmb + 0 (k  4 ) 

(A3) 

(A4) 

(A5) 

(A6) 
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Carrying then (A4) and (A6) to (A3), we have 
a 1 + 

Fbc=~(pab,  c qab, c+ r.b.r b + qa~,b + r . . .b--Pbc, . - -qbea--rb~,a 

--Pah P bh.c -- P~hq bh,~ -- P.h P ch,b -- Pohq ch,b + Pah P bc, h + Pahq bc, h 

--qh.Pbh.~ -- %hPch.b + qahPbc, h + P~tPlhP bh,~ + PalPlhPch.b -- PatPlhPbc, h) 

((A7) 

Then, taking into account (A2), we have 
X a  1 ac 1 bc 1 ac = T + ( z p , . . p , . . - ~ q , . . ) , ~ T  --~pda, c T  +(~Pb~,~--Pob, c) 

1 ..}_ l ~ TbC 
+(Po.Pb,,,~--~P~.Pb~,. ~qbc, a--qab, c) 

I ~ a c  1 ac 1 T a c  1 ~ ,-~bc - s t  .... l +~(pdmqd, .) ,cT --~PdtPthPdh,r --(rab, c--~rbr ~ 

+ Tb~ 1 + Tb~ P~mqb.,,~ --~(P.hqbc.h qahPbc, h) 
bc bc 1 bc 

+qahPbh,cT --PamPmhPbh, c T +~PamPmnPbc, nT  + O ( k  5) (A8) 

and from here we have (38)-(40). 

APPENDIX B 

Initially the expansion for V is 

V =  V'+ D t I 1 T 4 4 - ~  D212 T44 + . ~"'3"r~3 r T44 

1 D 4 1 4 T 4 4 + l  OStlsT44 + O(k4 ) (B1) 
4! 

the integrals being extended all over space. Now since the density functions 
are supposed to be of compact support, these integrals may be extended 
only over the region v occupied by matter. Using Synge's third-order 
equations of motion 

p ~ ,  + u .  (15 + pO) - S~.~,v = p V,,~. + Y~, + O (  k 4) (B2) 

1 5 + p 0 = - p ~ t + Z + O ( k  9/2) (B3) 

with definitions (105)-(107), where Y~ and Z are given by (64) and (65), 
respectively, we can evaluate these integrals in the following way: 

For D, I 1 T  44 we have 

DtI1T44= f T44 d3 x, 
o ,t 

= Iv [ j-44 __ i(  T 4 4 , 1 x T P ' 4 ) / T  44] d3 Xt 

= f [ / (  T 4 4 T p 4 / T 4 4 ) , ~  --~ T44Vt -3v  Z ]  d3x t Jv  O ( k  9/2) 
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-'=--Iv T44 ~rt d3x ' -  ., v Z d3x'"l- O( k9/2) 

: -I~( T'4~,  + z )  + o(1, ~/~) 

On the other hand 

(B4) 

1 3 44 1 f - DtI3T : - -  D, [i(T44T~4/T44) ,~t-t-(T44~rt) t "+ O ( k 4 ) ]  [ x - x ' [  2 d3x' 
6 6 J " " " 

1 D I  * =--6 , [ (T~"~q-T44V, . -Y~) . .  q-(T44~r.,)., 

-'l- O(k4)] Ix - X' I 2 d3x' 

1 f T'417'~)'~' ] x x'12d3x' = - ~ D ,  ( T " ~ +  

I ,2 , 1 +61 D, Y~ ~ Ix-  x ,  d3 x +-~D213(pV,)+O(k 4 ) ,  (B5) 

But 

because 

Now 

(T/xv,~ -~- Z 44 v~),~lx_x,12 d3x , -  

~2I;vr~176 

X ~ l  V,~ d3 xr 
v ~,v 

(B6) 

I T44~/'~ T 4 4 ( T 4 4 ) ' ( X ~  v ' r~ -~'----X-~ d3xd3xr (B7) 

! ~ 4 4  fro " d3 x, X,~ l 

[ x~T44[ f  (T44) ,X~ "] =~ . . . .  ]x-x'13dzxJ dzx' 

II = T 44( T 44)CXto " X__~ Z X._...~ 
o ~ i , , _ x , i  3 a3xa3x' 

~--- v v Z 44(T44)  CXo - I-x--~ P d3 X d3 Xt 
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lffvT44(T44),(x'~-x,~)(x,~-x') 
= ]  o Ix -x ' l  3 d3xd3x' 

=_!f f r44(r44)'lx-x"-'d3xdS 
2 ~ v 

I fo T.4f%x ' (U8) = - ~  

then 

T ~,~),t,]x-x'[3d3x'--=2 d3x'- T*'f'dS (B9) 
at) o 

On the other hand, since 

 .1o, 

then, taking into accout (B5), (Bg), and (B10), we have 

1 ~ D313T44= ~ DtIl( T'r~ Ta4V) 

D, f (x~. - x;) g. d3x' 
t +5 

_ 1  D~/3( T 44 l~,) + O(k 4) (B11) 
6 

On the other hand, since 

1 r ) 5 / .  T 4 4  1 3 f ~,v 44 ~ . . . .  5!~"J'- 5!O' (T ..+T V~),mlx-x'14d3x'+O(k 4) (B12) 

then, taking into account (B4), (Bl l ) ,  and (B12), we have finally 

V= V-II(r44~/t+Z)-lD2tler44-!Dtll(r~176 T44V z 3 

1D, f (x.-x'~)Y. d3xt-~O213(T44V, t ) +? 

T V . ) .  + O(k 4) (B13) 
4! ' ' " 

that is to say, (63). 
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For the potential W. we initially have 

W. = IV~ + iDtll( T 4~ ) - �89 T 4~ ) 

+~iD313( T 4~) + O(k 7/2) (B14) 

but, since from (B2) we have 

i( T4~),t = T ~'~,~ + T 44 ~r# _ y .  + O(k 4) (B15) 

then 

iD, I , (T  4~) = i I (r4~)"d3x'  

= f ( r ~ , ~  + T44Va - Y.)  d3x'+ O(k 4) 

= - f Y .  d3x'+ O(k 4) (B16) 

with which (B14) becomes 

W~= ~,~-I1(Y,~)-�89 (B17) 

that is to say (69). 
Now with V and W~ given by (B13) and (B17), respectively, the 

remaining expansions from (67) to (95) are easily derived. 

APPENDIX C 

Since the gravitational field we are considering is static, the Lagrangian 
does not depend explicitly on time and so the following quantity is 

conserved: 

Then, we can write 

~ -  u~ O~/Ou~ (C1) 

~ - l ( ~ 2 - ~ u ~ , a ~ / a u ~ ) - I = E  (C2) 

where, taking into account (14) and (102)-(104), 

= [1 + 744- (6~  + 7,~)u~u~ + O(k4)] ,/2 (C3) 

Now, expanding ~ - ' ,  we have 
,Sg -1 1 l u 2_ 

3 2 2 + u4+2y~,,u~u,,u 2) +~( Y44 - 2"Y44u - 2"y~'y44u~u,, 
5 3 2 2 --~(~//44--3~44 u + 3'Y44 u4 -  U6)-l- O(k 4) (C4) 
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and then, carrying (C3) and (C4) to (C2) and taking into account (120)- 
(122), we have 

E =�89 2- V+~V 2- K~+~Vu2-~u2K~ 

+ v g o . o . - 3  4 - 9 , , 2  2 3a-r3._]_281V/.d4 t g U  ~ V  U - - ~ V  

+�89 + 4K~)u .u~  "t"5 u6 ..~_ 1 ~ "It- O(k 4) (C5) 

Finally, if we take into account that 

u 2 = 2 E + 2 V - l O V 2 - 3 E 2 + 2 K r  (C6) 

then, from (C5) and (C6) we have 

�89 2= E +  V - 5 V 2 +  K ,~r  1 4 v 3 + g V E  z 

- 6  VKr162 + 18EV 2 - 2EKr - BE 2 + 2E 3 

1 1 -~( E~, + 4K.~)u.u~ - ~ d  + O(k 4) (C7) 

that is to say, (165). 
On the other hand, due to the spherical symmetry, the following 

quantity is also conserved: 

x ,  a~/a~2 - X 2 a2g/a21 (C8) 

We can then write 

~ - l [ X l g 2 ~ 2 ~  --  X2g~12,~ + i ( x , g 2 4  -- x 2 g , 4 ) ]  = A (C9) 

where, as before, 37 -I is given by (C4). Then, using (102)-(104), (120)-(122), 
and (161), from (C9) we have in polar coordinates 

A = r2 dp I + 3 V + 2 V 2 - K , ~ o - + - - + - V u 2 +  ug+qs~ +O(k 7/2) (ClO) 
2 2 

with &l as in (162). 
Now, since 

defining h by 

A E  = r 2 6 [ l + 4 V + E ] E  + O(k  7/2) 

h = A ( 1 - E )  

from (C10) and (Cll)  we have 

r2~ = h [ 1 - 4 V + 8 V 2 + E  2-~bl]+O(k 7/2) 

that is to say, (166). 

(Cll) 

(cl2) 

(Cl3) 
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